Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl halides intramolecular

Electrophilic attack on the sulfur atom of thiiranes by alkyl halides does not give thiiranium salts but rather products derived from attack of the halide ion on the intermediate cyclic salt (B-81MI50602). Treatment of a s-2,3-dimethylthiirane with methyl iodide yields cis-2-butene by two possible mechanisms (Scheme 31). A stereoselective isomerization of alkenes is accomplished by conversion to a thiirane of opposite stereochemistry followed by desulfurization by methyl iodide (75TL2709). Treatment of thiiranes with alkyl chlorides and bromides gives 2-chloro- or 2-bromo-ethyl sulfides (Scheme 32). Intramolecular alkylation of the sulfur atom of a thiirane may occur if the geometry is favorable the intermediate sulfonium ions are unstable to nucleophilic attack and rearrangement may occur (Scheme 33). [Pg.147]

Many Jluonnaled aromatic compounds are alkylated with alkyl halides under Fnedel-Crafis conditions For example, the intramolecular alkylation of 3-fluoro-At-(chloroaee-tyl)amhne with alununum chlonde gives 6-fluorooxmdole [5] (equation 5) Similarly, 3 -chloro-4-fluoropropiophenone affords 5-fluoromdanone [6] (equation 6)... [Pg.408]

Stereochemical positioning of a functional group, relative to a separate enamine moiety in the same molecule, can be done in such a manner that a simple intramolecular alkylation or acylation will cause cyclization. Such intramolecular cycloalkylations with alkyl halides have been reported 107,108). Inftamolecular cycloacylations of enamines with esters 109, 110,110a) and with nitriles 110a,l 11,111a) have also been observed. [Pg.233]

The formation of bicyclic imines (263,264) from piperidine enamines and y-bromopropyl amines may appear at first sight to be a simple extension of the reactions of enamines with alkyl halides. However, evidence has been found that the products are formed by an initial enamine exchange, followed by an intramolecular enamine alkylation. Thus y-bromodiethylamino-propane does not react with piperidinocyclohexene under conditions suitable for the corresponding primary amine. Furthermore, the enamine of cyclopentanone, but not that of cyclohexanone, requires a secondary rather than primary y-bromopropylamine, presumably because of the less favorable imine to enamine conversion in this instance. [Pg.351]

The triazole 76, which is more accurately portrayed as the nucleophilic carbene structure 76a, acts as a formyl anion equivalent by reaction with alkyl halides and subsequent reductive cleavage to give aldehydes as shown (75TL1889). The benzoin reaction may be considered as resulting in the net addition of a benzoyl anion to a benzaldehyde, and the chiral triazolium salt 77 has been reported to be an efficient asymmetric catalyst for this, giving the products (/ )-ArCH(OH)COAr, in up to 86% e.e. (96HCA1217). In the closely related intramolecular Stetter reaction e.e.s of up to 74% were obtained (96HCA1899). [Pg.100]

Another method for the synthesis of epoxides is through the use of halo-hydrins, prepared by electrophilic addition of HO—X to alkenes (Section 7.3). When halohydrins are treated with base, HX is eliminated and an epoxide is produced by an intramolecular Williamson ether synthesis. That is, the nucleophilic alkoxide ion and the electrophilic alkyl halide are in the same molecule. [Pg.661]

A stmple and general synthesis of 2,2,4,5-tetrasubstituted furan-3(2//)-ones from 4-hydroxyalk-2-ynones and alkyl halides via tandem CO, addition-elimination protocol is described <96S 1431>. Palladiuni-mediated intramolecular cyclization of substituted pentynoic adds offers a new route to y-arylidenebutyrolactones <96TL1429>. The first total synthesis of (-)-goniofupyrone 39 was reported. Constmction of the dioxabicyclo[4.3.0]nonenone skeleton was achieved by tosylation of an allylic hydroxy group, followed by exposure to TBAF-HF <96TL5389>. [Pg.131]

Chapter 1 deals with alkylation of carbon nucleophiles by alkyl halides and tosylates. We discuss the major factors affecting stereoselectivity in both cyclic and acyclic compounds and consider intramolecular alkylation and the use of chiral auxiliaries. [Pg.1334]

S ilylation-intramolecular reduction, ketone-alcohol reduction, 78-79 Single-electron transfer (SET) process, alkyl halides and triflate reduction to alkanes, 28-31... [Pg.755]

TMC ATRA reactions can also be conducted intramolecularly when alkyl halide and alkene functionalities are part of the same molecule. Intramolecular TMC ATRA or atom transfer radical cyclization (ATRC) is a very attractive synthetic tool because it enables the synthesis of functionalized ring systems that can be used as starting materials for the preparation of complex organic molecules [10,11], Furthermore, halide functionality in the resulting product can be very beneficial because it can be easily reduced, eliminated, displaced, converted to a Grignard reagent, or if desired serve as a further radical precursor. The use of copper-mediated ATRC in organic synthesis has been reviewed recently and some illustrative examples are shown in Scheme 3 [10,11,31,32,33],... [Pg.224]

Several other examples are reported in the literature on the synthesis of indolizidine skeleton through the intramolecular nucleophilic attack of the six-membered ring nitrogen atom onto an electrophilic center such as an alkyl halide <20000L3861, 1997S95>, triflate <20010L711>, and esters <1998TL5693>. [Pg.384]

C2 is both electrophilic and particularly acidic. C5 is electrophilic, and C6 has no reactivity, so the first bond to be made must be C2-C5. Therefore, deprotonation of C2 gives a nucleophile, which can attack electrophilic C5 to give an enolate at C6. Now C6 is nucleophilic, and intramolecular 8 2 substitution at C2 gives the product. Although C2 is a tertiary alkyl halide and is not normally expected to undergo Sn2 substitution, this reaction works because it is intramolecular. [Pg.15]

Electron-rich carbyne complexes can react at the carbyne carbon atom with electrophiles to yield carbene complexes. Numerous examples of such reactions, mostly protonations, have been reported [519]. Depending on the nucleophilicity of the carbyne complex, such reactions will occur more or less readily. The protonation of weakly nucleophilic carbyne complexes requires the use of strong acids, such as triflic [533], tetrafluoroboric [534] or hydrochloric acid [535,536]. More electron-rich carbyne complexes can, however, even react with phenols [537,538], water [393,539], amines [418,540,541], alkyl halides, or intramolecularly with arenes (cyclometallation, [542]) to yield the corresponding carbene complexes. A selection of illustrative examples is shown in Figure 3.25. [Pg.96]

The reaction of acceptor-substituted carbene complexes with alcohols to yield ethers is a valuable alternative to other etherification reactions [1152,1209-1211], This reaction generally proceeds faster than cyclopropanation [1176], As in other transformations with electrophilic carbene complexes, the reaction conditions are mild and well-suited to base- or acid-sensitive substrates [1212], As an illustrative example, Experimental Procedure 4.2.4 describes the carbene-mediated etherification of a serine derivative. This type of substrate is very difficult to etherify under basic conditions (e.g. NaH, alkyl halide [1213]), because of an intramolecular hydrogen-bond between the nitrogen-bound hydrogen and the hydroxy group. Further, upon treatment with bases serine ethers readily eliminate alkoxide to give acrylates. With the aid of electrophilic carbene complexes, however, acceptable yields of 0-alkylated serine derivatives can be obtained. [Pg.196]

Katritzky et al. reported that alkyl halides convert to thiols in one pot when treated with a thiopyridine, which initially transforms to the pyridi-nium salt (34). Intramolecular ipsosubstitution takes place in the s t (34) by the remote hydroxyl group to afford the corresponding thiols shown in reaction (49) (85TL469). Thus, pyridinium sulfides readily undergo both... [Pg.46]

The procedure provides a good example of a high-yield intramolecular Wurtz reaction. Internjolecular Wurtz reactions normally do not give high yields of coupled products and are accompanied by formation of alkenes and alkanes corresponding to the alkyl halide.7 In contrast, intramolecular reactions of... [Pg.30]

A recent development in the synthesis of 3//-3-benzazepin-2-ones has been the photocyc-lization of A-(chloroacetyl)phenethylamines (Scheme 25). Ring closure is by homolysis of the alkyl halide followed by intramolecular coupling of the alkyl radical with an aromatic radical cation. Yields are good, especially with a stabilizing electron-donating group (MeO, NMe2) at the position meta to the ethylamino function (i.e. ortho or para to the site of cyclization). Isomeric benzazepinones are normally obtained (Scheme 25) with meta-substituted phenethylamines (80H(14)ll). [Pg.536]


See other pages where Alkyl halides intramolecular is mentioned: [Pg.24]    [Pg.216]    [Pg.215]    [Pg.150]    [Pg.137]    [Pg.56]    [Pg.12]    [Pg.154]    [Pg.234]    [Pg.223]    [Pg.36]    [Pg.125]    [Pg.920]    [Pg.28]    [Pg.23]    [Pg.40]    [Pg.91]    [Pg.65]    [Pg.18]    [Pg.784]    [Pg.119]    [Pg.115]    [Pg.109]    [Pg.226]    [Pg.51]   


SEARCH



Alkylation intramolecular

Halides, alkyl intramolecular reactions with

Intramolecular alkylations

© 2024 chempedia.info