Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl chlorides elimination reactions

It is a reaction of wide scope both the phosphite 1 and the alkyl halide 2 can be varied. Most often used are primary alkyl halides iodides react better than chlorides or bromides. With secondary alkyl halides side reactions such as elimination of HX can be observed. Aryl halides are unreactive. [Pg.15]

It has been shown that the imidoyl chloride moiety of 2(lff)-pyrazinones can imdergo an easy addition/elimination reaction with alkyl amines [24], while reactions with anilines proceed under harsher conditions. Ullmann coupling [109-113] of 2(lff)-pyrazinones with substituted anilines could open the way to the libraries of physiologically active compounds useful in inhibiting HIV replication [7]. Polymer-bound pyrazinone was successfully... [Pg.294]

Transformations through 1,2-addition to a formal PN double bond within the delocalized rc-electron system have been reported for the benzo-l,3,2-diazaphospholes 5 which are readily produced by thermally induced depolymerization of tetramers 6 [13] (Scheme 2). The monomers react further with mono- or difunctional acyl chlorides to give 2-chloro-l,3,2-diazaphospholenes with exocyclic amide functionalities at one nitrogen atom [34], Similar reactions of 6 with methyl triflate were found to proceed even at room temperature to give l-methyl-3-alkyl-benzo-l,3,2-diazaphospholenium triflates [35, 36], The reported butyl halide elimination from NHP precursor 13 to generate 1,3,2-diazaphosphole 14 upon heating to 250°C and the subsequent amine addition to furnish 15 (Scheme 5) illustrates another example of the reversibility of addition-elimination reactions [37],... [Pg.71]

Azetidones (p-lactams) are generally obtained in high yield from (3-halopropion-amides (Table 5.18) and the low yield from the reaction of N-phenyl (3-chloropropi-onamide can be reconciled with the isolation of A-phenyl acrylamide in 58% yield [34]. The unwanted elimination reaction can be obviated by conducting the cyclization in a soliddiquid system under high dilution [35, 36]. Azetidones are also formed by a predominant intramolecular cyclization of intermolecular dimerization to yield piperazine-2,5-diones, or intramolecular alkylation to yield aziridones. Aone-pot formation of azetidones in 45-58% yield from the amine and P-bromocarboxylic acid chloride has also been reported [38]. [Pg.183]

In order to strengthen evidence in favour of the proposition that concerted inplane 5n2 displacement reactions can occur at vinylic carbon the kinetics of reactions of some /3-alkyl-substituted vinyliodonium salts (17) with chloride ion have been studied. Substitution and elimination reactions with formation of (21) and (22), respectively, compete following initial formation of a chloro-A, -iodane reaction intermediate (18). Both (17) and (18) undergo bimolecular substitution by chloride ion while (18) also undergoes a unimolecular (intramolecular) jS-elimination of iodoben-zene and HCl. The [21]/[22] ratios for reactions of (18a-b) increase with halide ion concentration, and there is no evidence for formation of the -isomer of (Z)-alkene (21) iodonium ion (17d) forms only the products of elimination, (22d) and (23). [Pg.396]

The prominent role of alkyl halides in formation of carbon-carbon bonds by nucleophilic substitution was evident in Chapter 1. The most common precursors for alkyl halides are the corresponding alcohols, and a variety of procedures have been developed for this transformation. The choice of an appropriate reagent is usually dictated by the sensitivity of the alcohol and any other functional groups present in the molecule. Unsubstituted primary alcohols can be converted to bromides with hot concentrated hydrobromic acid.4 Alkyl chlorides can be prepared by reaction of primary alcohols with hydrochloric acid-zinc chloride.5 These reactions proceed by an SN2 mechanism, and elimination and rearrangements are not a problem for primary alcohols. Reactions with tertiary alcohols proceed by an SN1 mechanism so these reactions are preparatively useful only when the carbocation intermediate is unlikely to give rise to rearranged product.6 Because of the harsh conditions, these procedures are only applicable to very acid-stable molecules. [Pg.142]

Mg+" reacts with alkyl halides in the gas phase via a range of substrate-dependent pathways Not all halides are reactive—examples of unreactive substrates include methyl chloride, vinyl chloride, trichloro and tetrachloro ethylene. Reaction with ethyl chloride proceeds via an elimination reaction (equation 18) followed by a displacement reaction (equation 19). For larger alkyl halides, such as isopropyl chloride, chloride abstraction also occurs (equation 20). For multiply halogenated substrates such as carbon tetrachloride, oxidative reactions occur (equations 21 and 22), although organometallic... [Pg.160]

Alkyl halides with (3-hydrogens generally undergo only elimination reactions under the conditions of the vinyl substitution (100 C in the presence of an amine or other base). Exceptions are known only in cases where intramolecular reactions are favorable. Even alkyl halides without (3-hydrogens appear not to participate in the intermolecular alkene substitution since no examples have been reported, with the exception of reactions with benzyl chloride and perfluoroalkyl iodides. [Pg.842]

The competition between nucleophilic substitution and base-induced elimination in the gas phase has been studied using deuterium kinetic isotope effects (KIE).6 The overall reaction rate constants and KIE have been measured for the reactions of RC1 + CIO- (R = Me, Et, t -Pr, and r-Bu). As the extent of substitution in the alkyl chloride increases, the KIE effects become increasingly more normal. These results indicated that the E2 pathway becomes the dominant channel as the alkyl group becomes more sterically hindered. [Pg.308]

An ab initio study of the. S N2 and E2 mechanisms has been performed for the reaction between the cyanide ion and ethyl chloride in dimethyl sulfoxide solution.5 Theoretical calculations have predicted a free energy barrier for nitrile formation of 24.1 kcal mol-1, close to the experimental value of 22.6 kcal mol-1 (Scheme 3). It has also been predicted that the isonitrile formation is less favorable by 4.7 kcal mol-1, while the elimination mechanism is less favorable by more than 10 kcal mol-1. These results indicated that isonitrile formation and bimolecular elimination are not significant side-reactions for primary alkyl chloride reactions. [Pg.278]

The next phase of the synthesis was installation of the dimethylamino-oxazoline ring system. This was constructed from the oxazolidinone precursor 19. Oxazolidinone formation occurred when 25 was reacted with thionyl chloride. The more nucleophilic carbonyl of 19 was then O-alkylated with the Meerwein reagent to give an iminium ion that readily participated in a nucleophilic addition/elimination reaction with dime-thylamine to give 26. The final step of the synthesis was O-deacetylation of 26 with sodium methoxide to provide (—)-allosamizoline hydrochloride in 98% yield after acidification. [Pg.243]


See other pages where Alkyl chlorides elimination reactions is mentioned: [Pg.633]    [Pg.31]    [Pg.85]    [Pg.575]    [Pg.217]    [Pg.398]    [Pg.269]    [Pg.59]    [Pg.346]    [Pg.118]    [Pg.114]    [Pg.502]    [Pg.281]    [Pg.92]    [Pg.239]    [Pg.328]    [Pg.269]    [Pg.81]    [Pg.570]    [Pg.349]    [Pg.544]    [Pg.347]    [Pg.293]    [Pg.378]    [Pg.131]    [Pg.352]    [Pg.111]    [Pg.330]    [Pg.187]    [Pg.194]    [Pg.253]    [Pg.337]    [Pg.422]    [Pg.148]    [Pg.152]    [Pg.96]    [Pg.301]   
See also in sourсe #XX -- [ Pg.1074 ]




SEARCH



Alkyl chloride alkylation

Alkyl chlorides

Alkyl elimination

Alkyl elimination reactions

Chloride elimination

Elimination alkylative

© 2024 chempedia.info