Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tertiary reactions with

CH,),CHNO, -h HONO = (CH,),C(NO)NO, -h H,0 producing a blue solution. A tertiary nitro paraffin such as trimethylnitro-methane, (CH )jCNO, gives no reaction with nitrous acid. [Pg.134]

The reason for this is that reaction (i) is usually much slower than (ii) and (iii) so that the main reaction appears to be (Iv) (compare the preparation of tertiary butyl chloride from tertiary butyl alcohol and concentrated hydrochloric acid, Section 111,33). If the reaction is carried out in the presence of P3rridine, the latter combines with the hydrogen chloride as it is formed, thus preventing reactions (ii) and (iii), and a good yield of the ester is generally obtained. The differentiation between primary, secondary and tertiary alcohols with the aid of the Lucas reagent is described in Section III,27,(vii). [Pg.1067]

Butler recently reviewed the diazotization of heterocyclic amines (317). Reactions with nitrous acid yield in most cases N-exocyclic compounds. Since tertiary amines are usually regarded as inen to nitrosation, this... [Pg.65]

Tertiary alcohols are converted to alkyl chlorides m high yield within minutes on reaction with hydrogen chloride at room temperature and below... [Pg.152]

Because tertiary alcohols are so readily converted to chlorides with hydrogen chlo nde thionyl chlonde is used mainly to prepare pnmary and secondary alkyl chlondes Reactions with thionyl chlonde are normally carried out m the presence of potassium carbonate or the weak organic base pyndme... [Pg.165]

Section 4 9 The potential energy diagrams for separate elementary steps can be merged into a diagram for the overall process The diagram for the reac tion of a secondary or tertiary alcohol with a hydrogen halide is charac terized by two intermediates and three transition states The reaction is classified as a ummolecular nucleophilic substitution, abbreviated as SnI... [Pg.180]

We learned m the preceding section that different reactions are observed when the var lous classes of alkylammes—primary secondary and tertiary—react with mtrosatmg agents Although no useful chemistry attends the nitrosation of tertiary alkylammes elec trophilic aromatic substitution by mtrosyl cation ( N=0 ) takes place with A A dialkyl arylamines... [Pg.945]

With aldehydes, primary alcohols readily form acetals, RCH(OR )2. Acetone also forms acetals (often called ketals), (CH2)2C(OR)2, in an exothermic reaction, but the equiUbrium concentration is small at ambient temperature. However, the methyl acetal of acetone, 2,2-dimethoxypropane [77-76-9] was once made commercially by reaction with methanol at low temperature for use as a gasoline additive (5). Isopropenyl methyl ether [116-11-OJ, useful as a hydroxyl blocking agent in urethane and epoxy polymer chemistry (6), is obtained in good yield by thermal pyrolysis of 2,2-dimethoxypropane. With other primary, secondary, and tertiary alcohols, the equiUbrium is progressively less favorable to the formation of ketals, in that order. However, acetals of acetone with other primary and secondary alcohols, and of other ketones, can be made from 2,2-dimethoxypropane by transacetalation procedures (7,8). Because they hydroly2e extensively, ketals of primary and especially secondary alcohols are effective water scavengers. [Pg.94]

Tertiary alkyl chlorides have been converted to the tertiary nittiles with trimethylsilyl nittile ia dichioromethane ia the presence of SnCl (131). The reaction was appHed to the synthesis of several bridgehead nittiles, such as 1-adamantyl and 1-diamantyl nittiles from the corresponding chloro or bromo derivatives usiag SnCl or AIBr. catalysts (132). [Pg.560]

Reaction with nitrous acid can be used to differentiate primary, secondary, and tertiary mononitroparaffins. Primary nitroparaffins give nitrolic acids, which dissolve in alkali to form bright red salts. [Pg.99]

However, the composition of the mixture can be controlled to some extent by the correct choice of olefin and reaction conditions. For example, the production of tertiary phosphines can be maximi2ed by conducting the reaction at relatively low phosphine pressures, 1.5 MPa (200 psi), and using a 20—30% stoichiometric excess of a straight-chained olefin as in the synthesis of tributylphosphine [988-40-3] by reaction with 1-butene [106-98-9]. [Pg.318]

In this case, yields >95% of the tertiary phosphine are obtained. Tributylphosphine is readily converted to tetraalkylphophonium salts by reaction with an alkyl haUde. These compounds are used commercially as biocides and phase-transfer catalysts. [Pg.318]

Phosphonium salts are readily prepared by the reaction of tertiary phosphines with alkyl or henzylic haHdes, eg, the reaction of tributylphosphine [998-40-3] with 1-chlorobutane [109-69-3] to produce tetrabutylphosphonium chloride [2304-30-5]. [Pg.319]

The addition of alkyl haUdes to phosphines is analogous to the reactions with amines. Because primary phosphonium salts are highly dissociated, the reaction proceeds to the tertiary or quartemary salts. [Pg.379]

The speed of the reaction depends both on the metal and on the alcohol, increasing as electropositivity iacreases and decreasiag with length and branching of the chain. Thus sodium reacts strongly with ethanol, but slowly with tertiary butyl alcohol. The reaction with alkaU metals is sometimes carried out ia ether, ben2ene, or xylene. Some processes use the metal amalgam or hydride iastead of the free metal. Alkaline earth metals and aluminum are often covered with an oxide film which hinders the reaction. [Pg.24]

Analytical methods iaclude thin-layer chromatography (69), gas chromatography (70), and specific methods for determining amine oxides ia detergeats (71) and foods (72). Nuclear magnetic resonance (73—75) and mass spectrometry (76) have also been used. A frequentiy used procedure for iadustrial amine oxides (77) iavolves titratioa with hydrochloric acid before and after conversion of the amine to the quaternary ammonium salt by reaction with methyl iodide. A simple, rapid quaHty control procedure has been developed for the deterrniaation of amine oxide and unreacted tertiary amine (78). [Pg.192]

Cycloaliphatic amines are strong bases with chemistry similar to that of simpler primary, secondary, or tertiary amines. Upon reaction with nitrous acid,... [Pg.208]

A wide variety of quaternaries can be prepared. Alkylation with benzyl chloride may produce quaternaries that are biologically active, namely, bactericides, germicides, or algaecides. Reaction of a tertiary amine with chloroacetic acid produces an amphoteric compound, a betaine. [Pg.219]

Reaction with Nitrous Acid. Primary, secondary, and tertiary aromatic amines react with nitrous acid to form a variety of products. Primary aromatic amines form diazonium salts. ... [Pg.230]

Displacement of a tertiary amine from a quaternary (eq. lb) iavolves the attack of a nucleophile on the a-carbon of a quaternary and usually competes with the Hoffman elimination (173). The counterion greatiy iafluences the course of this reaction. For example, the reaction of propyltrimethylammonium ion with hydroxide ion yields 19% methanol and 81% propylene, whereas the reaction with phenoxide ion yields 65% methoxybenzene and 15% propylene (174). [Pg.377]

Quaternary ammonium alkyl ethers are prepared similarly an alkaline starch is reacted with a quaternary ammonium salt containing a 3-chloto-2-hydtoxyptopyl or 2,3-epoxyptopyl radical. Alternatively, such derivatives can be prepared by simple quaternization of tertiary aminoalkyl ethers by reaction with methyl iodide. Sulfonium (107) and phosphonium (108) starch salts have also been prepared and investigated. Further work has explained the synthesis of diethyl aminoethyl starch (109) as well as the production of cationic starches from the reaction of alkaline starch with... [Pg.345]

Sulfation by sulfamic acid has been used ia the preparation of detergents from dodecyl, oleyl, and other higher alcohols. It is also used ia sulfating phenols and phenol—ethylene oxide condensation products. Secondary alcohols react ia the presence of an amide catalyst, eg, acetamide or urea (24). Pyridine has also been used. Tertiary alcohols do not react. Reactions with phenols yield phenyl ammonium sulfates. These reactions iaclude those of naphthols, cresol, anisole, anethole, pyrocatechol, and hydroquinone. Ammonium aryl sulfates are formed as iatermediates and sulfonates are formed by subsequent rearrangement (25,26). [Pg.62]

Trialkyl- and triarylarsine sulfides have been prepared by several different methods. The reaction of sulfur with a tertiary arsine, with or without a solvent, gives the sulfides in almost quantitative yields. Another method involves the reaction of hydrogen sulfide with a tertiary arsine oxide, hydroxyhahde, or dihaloarsorane. X-ray diffraction studies of triphenylarsine sulfide [3937-40-4], C gH AsS, show the arsenic to be tetrahedral the arsenic—sulfur bond is a tme double bond (137). Triphenylarsine sulfide and trimethylarsine sulfide [38859-90-4], C H AsS, form a number of coordination compounds with salts of transition elements (138,139). Both trialkyl- and triarylarsine selenides have been reported. The trialkyl compounds have been prepared by refluxing trialkylarsines with selenium powder (140). The preparation of triphenylarsine selenide [65374-39-2], C gH AsSe, from dichlorotriphenylarsorane and hydrogen selenide has been reported (141), but other workers could not dupHcate this work (140). [Pg.338]

Aliphatic Alcohols and Thiols. Ahphatic alcohols on reaction with chloroformates give carbonates and hydrogen chloride. Frequendy, the reaction proceeds at room temperature without a catalyst or hydrogen chloride acceptor. However, faster reactions and better yields are obtained in the presence of alkaU metals or their hydroxides, or tertiary amines. Reactions of chloroformates with thiols yield monothiolocarbonates (14). [Pg.38]

Heterocyclic Alcohols. Thek reactions with chloroformates lead to carbonates. Thus furan- and tetrahydrofuran-derived alcohols give the corresponding carbonates in 75% yield (15). Inorganic bases and tertiary amines as acid acceptors increase the rate and yield in this reaction. [Pg.39]

The benzylation of a wide variety of aHphatic, aromatic, and heterocycHc amines has been reported. Benzyl chloride is converted into mono-, di-, and tribenzyl amines by reaction with ammonia. Benzylaniline [103-32-2] results from the reaction of benzyl chloride with aniline. Reaction with tertiary amines yields quaternary ammonium salts with trialkylpbospbines, quaternary phosphonium salts and with sulfides, sulfonium salts are formed. [Pg.59]


See other pages where Tertiary reactions with is mentioned: [Pg.44]    [Pg.127]    [Pg.370]    [Pg.386]    [Pg.386]    [Pg.315]    [Pg.320]    [Pg.4]    [Pg.240]    [Pg.247]    [Pg.169]    [Pg.261]    [Pg.137]    [Pg.439]    [Pg.211]    [Pg.283]    [Pg.336]    [Pg.339]    [Pg.340]    [Pg.455]   


SEARCH



1.3- dicarbonyl compounds reaction with tertiary

Acid-catalyzed reactions with tertiary alkyl group

Amines, tertiary reaction with 1,3-dicarbonyl

Amines, tertiary reaction with arenes

Amines, tertiary reactions with oxygen

Arenes reaction with tertiary

Coupling reaction with organocuprates tertiary

Cyanogen bromide, reactions with tertiary

Cyanogen bromide, reactions with tertiary amines

Grignard reagents reaction with esters to form tertiary

Halides coupling reactions with secondary and tertiary

Methyl iodide reaction rate with tertiary amines

Organolithiums reaction with esters to form tertiary

Platinum-metal complexes reaction with tertiary phosphine

Reaction With Hydrazine, Secondary, and Tertiary Amines

Reactions with epoxides tertiary alkyl

Tertiary alcohols reaction with halogen acids

Tertiary alcohols reaction with hydrogen halides

Tertiary alcohols reaction with, phosgene

Tertiary alkyl coupling reactions with alkenyl halides

Tertiary amides reaction with

Tertiary amines reaction with, phosgene

Tertiary amines reactions with

Tertiary enamines reactions with electrophiles

© 2024 chempedia.info