Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkalis tantalum

Tantalum Peroxyfluorides or Fluoroxypertantalates.—The alkali tantalum oxyfluorides also have the property of taking up oxygen by reaction with hydrogen peroxide. [Pg.204]

Tantalum is a gray, heavy, and very hard metal. When pure, it is ductile and can be drawn into fine wire, which is used as a filament for evaporating metals such as aluminum. Tantalum is almost completely immune to chemical attack at temperatures below ISOoC, and is attacked only by hydrofluoric acid, acidic solutions containing the fluoride ion, and free sulfur trioxide. Alkalis attack it only slowly. At high temperatures, tantalum becomes much more reactive. The element has a melting point exceeded only by tungsten and rhenium. Tantalum is used to make a variety... [Pg.132]

Tantalum Oxides. Tantalum pentoxide [1314-61 -0] Ta20, (mp = 1880°C, density = 8.73 g/cm ) is a white powder existing in two thermodynamically stable modifications. The orthorombic P-phase changes at 1360°C into the tetragonal a-modiftcation. The existence of an S-modiftcation has also been reported (70). Tantalum pentoxide reacts slowly with hot hydrofluoric acid but is insoluble in water and in most solutions of acids and alkalies. For analytical purposes, it can be dissolved by fusion with alkali hydroxides, alkali carbonates, and potassium pyrosulfate. [Pg.332]

Zirconium lias outstanding resistance to hydrochloric acid and is a cheaper alternative to titanium for this duty. It is superior to titanium in resistance to sulfuric acid. Zirconium has excellent resistance to caustic alkalies in all concentrations and is superior to both titanium and tantalum in this respect. [Pg.98]

The elements of Group 5 are in many ways similar to their predecessors in Group 4. They react with most non-metals, giving products which are frequently interstitial and nonstoichiometric, but they require high temperatures to do so. Their general resistance to corrosion is largely due to the formation of surface films of oxides which are particularly effective in the case of tantalum. Unless heated, tantalum is appreciably attacked only by oleum, hydrofluoric acid or, more particularly, a hydrofluoric/nitric acid mixture. Fused alkalis will also attack it. In addition to these reagents, vanadium and niobium are attacked by other hot concentrated mineral acids but are resistant to fused alkali. [Pg.979]

Niobium and tantalum also form various oxide phases but they are not so extensive or well characterized as those of vanadium. Their pentoxides are relatively much more stable and difficult to reduce. As they are attacked by cone HF and will dissolve in fused alkali, they may perhaps... [Pg.982]

Sails Tests on niobium have only been carried out in a limited number of salt solutions however, in the main niobium exhibited similar re.sistance to tantalum in most salt solutions, and like tantalum it is attacked by salts that hydrolyse to form alkalis. [Pg.855]

It is in its behaviour to caustic alkalis that zirconium shows itself to be superior to those other elements of Groups IV and V whose resistance to corrosion results primarily from an ability to form surface films. Thus, in contrast to tantalum, niobium and titanium, zirconium is virtually completely resistant to concentrated caustic solutions at high temperatures, and it is only slightly attacked in fused alkalis. Resistance to liquid sodium is good. Zirconium is thus an excellent material of construction for sections of chemical plant demanding alternate contact with hot strong acids and hot strong alkalis—a unique and valuable attribute. [Pg.886]

Tantalum has excellent resistance to virtually all salts including chlorides (especially cupric and ferric chloride), sulphates, nitrates and salts of organic acids, provided (a) they do not contain fluorides, fluorine and free sulphur trioxide, or (b) hydrolyse to produce strong alkalis. [Pg.898]

In the second part of the 20th century, the tantalum capacitor industry became a major consumer of tantalum powder. Electrochemically produced tantalum powder, which is characterized by an inconsistent dendrite structure, does not meet the requirements of the tantalum capacitor industry and thus has never been used for this purpose. This is the reason that current production of tantalum powder is performed by sodium reduction of potassium fluorotantalate from molten systems that also contain alkali metal halides. The development of electronics that require smaller sizes and higher capacitances drove the tantalum powder industry to the production of purer and finer powder providing a higher specific charge — CV per gram. This trend initiated the vigorous and rapid development of a sodium reduction process. [Pg.8]

Systematic investigations of the compounds that can be precipitated by adding alkali metals fluorides to HF solutions containing tantalum or niobium are discussed in [60, 61]. Compositions of the precipitated compounds and of their corresponding mother solutions are given in Table 4. [Pg.16]

Table 6 summarizes the main compounds that can be prepared by adding alkali metal fluorides to fluorine solutions that contain niobium or tantalum. [Pg.17]

An increase in the Me F ratio leads to an increase in the acidity of the initial solution, whereas the acidity of alkali metals increases according to their molecular weight, from Li to Cs. Therefore the additives of fluorides of alkali metals having higher atomic weight provide formation of complex fluorides with lower coordination number of tantalum or niobium. [Pg.17]

Attempts to obtain fluoride compounds of niobium and tantalum with alkali earth and some transitional metals were made as early as one hundred years ago, but synthesis and identification methods were described only at later times. [Pg.19]

Niobium dioxyfluoride, Nb02F, and tantalum dioxyfluoride, Ta02F, can be successfully used as precursors for the synthesis of many oxyfluoride compounds of niobium and tantalum. Systematic investigations performed on MeC>2F - M2CO3 systems, in which Me = Nb or Ta and M = alkali metal, provided necessary information on optimal synthesis procedures and imparted some conformity on the mechanism of the chemical interaction between the components. [Pg.26]

Summarizing the above results, the following peculiarities of the interactions of niobium and tantalum compounds with alkali metal carbonates can be mentioned ... [Pg.37]

Compounds of the same stoichiometry type usually have the same type crystal structure within the row of alkali metals K - Rb - Cs rarely the same type structure with sodium-containing analogues and never ciystallize similarly with lithium-containing compounds. The crystal structure analysis of different fluoride and oxyfluoride compounds clearly indicates that the steric similarity between all cations and tantalum or niobium must be taken into account when calculating the X Me ratio. [Pg.118]

Three conceptual steps can be discerned in the definition of the ionic structure of fluoride melts containing tantalum or niobium. Based on the very first thermodynamic calculations and melting diagram analysis, it was initially believed that the coordination numbers of tantalum and niobium, in a molten system containing alkali metal fluorides, increase up to 8. [Pg.136]

The scheme of the interaction mechanism (Equation 88) testifies to an electro-affinity of MeFe" ions. In addition, MeFe" ions have a lower negative charge, smaller size and higher mobility compared to MeF6X(n+1> ions. The above arguments lead to the assumption that the reduction to metal form of niobium or tantalum from melts, both by electrolysis [368] and by alkali metals, most probably occurs due to interaction with MeF6 ions. The kinetics of the reduction processes are defined by flowing equilibriums between hexa-and heptacoordinated complexes. [Pg.194]

Tantalum powder is produced by reduction of potassium heptafluoro-tantalate, K2TaF7, dissolved in a molten mixture of alkali halides. The reduction is performed at high temperatures using molten sodium. The process and product performance are very sensitive to the melt composition. There is no doubt that effective process control and development of powders with improved properties require an understanding of the complex fluoride chemistry of the melts. For instance, it is very important to take into account that changes both in the concentration of potassium heptafluorotantalate and in the composition of the background melt (molten alkali halides) can initiate cardinal changes in the complex structure of the melt itself. [Pg.254]

A residual phase, usually consisting of insoluble fluorides and oxyfluorides of alkali earth and rare earth metals, is separated from the solution by filtration. The mechanism of the chemical decomposition of raw materials of the tantalum- and niobium-containing oxide type seems to be complicated, and unfortunately, the process has yet to be adequately investigated. [Pg.257]

The method is based on the complete dissolution of the raw material. Only alkali earth metals and rare earth metals that form insoluble salts do not usually provide any significant preliminary concentration of the material during decomposition. In addition, concentration of tantalum and niobium in the final solution yielding by dissolution depends on the composition of the raw material. [Pg.263]

Several methods are described for the production of tantalum and niobium metal. Metals can be obtained by reduction of pentachlorides with magnesium, sodium, hydrogen or by thermal decomposition in vacuum [24,28]. Oxides can be reduced using carbon, aluminum, calcium, magnesium [28, 537, 538] or alkali and rare earth metals [539]. [Pg.320]

Significant improvement of tantalum powder properties was achieved by the application of molten alkali halides as solvents for potassium heptafluorotantalate, K2TaF7. Variation of the initial concentration of K2TaF7 in the melt, stirring and rate of sodium loading enable a well-controllable production of tantalum powder with a wide variety of specific charges. Heller and Martin [590] proposed the use of a reactor equipped with a stirrer in 1960. Fig. 142 shows a typical scheme of the reactor [24, 576]. All metal parts of the reactor are made of nickel or nickel alloy. [Pg.331]

Rare earth metals, as well as alkali earth metals, can be used as oxygen getters in the purification of tantalum powder. Osaku and Komukai [608] developed a method for the production of tantalum and niobium metal powder by a two-step reduction of their oxides. The second step was aimed at reducing the oxygen content and was performed by thermal treatment with the addition of rare metals. The powder obtained by the described method is uniform, had a low oxygen level and was suitable for application in the manufacturing of tantalum capacitors. [Pg.338]

S Fluorination of tantalum and niobium oxides by hydrofluorides of ammonium or alkali metals yields fluorotantalate or monooxy-fluoroniobate compounds. Fluorination of tantalum or niobium oxides in the presence of oxides of other metals yields complex fluoride compounds containing both tantalum or niobium and added metals. [Pg.340]

T.F. Levchishina, R.L. Davidovich, Complex fluorides of zirconium, hafnium, niobium and tantalum with cations of alkali earth metals, Dep. VINITI, No 3595-75 Dep 1975. [Pg.358]

Although the elements tantalum and niobium were discovered more than 200 years ago in the form of oxides, the true beginning of the chemistry of tantalum and niobium was the discovery and investigation of complex fluorotantalates and fluoroniobates of alkali metals. Application of complex fluoride compounds enabled the separation of tantalum and niobium and in fact initiated the development of the industrial production of the metals and their compounds. [Pg.398]


See other pages where Alkalis tantalum is mentioned: [Pg.908]    [Pg.188]    [Pg.908]    [Pg.188]    [Pg.385]    [Pg.379]    [Pg.86]    [Pg.2451]    [Pg.34]    [Pg.950]    [Pg.978]    [Pg.7]    [Pg.19]    [Pg.20]    [Pg.34]    [Pg.37]    [Pg.283]    [Pg.327]    [Pg.333]    [Pg.335]    [Pg.336]    [Pg.340]    [Pg.340]   
See also in sourсe #XX -- [ Pg.5 , Pg.69 ]

See also in sourсe #XX -- [ Pg.5 , Pg.69 ]




SEARCH



© 2024 chempedia.info