Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkali metals in liquid

Solutions of alkali metals in liquid ammonia are used in organic chemistry as reducing agents. The deep blue solutions effectively contain solvated electrons (p. 126), for example... [Pg.221]

The Birch reductions of C C double bonds with alkali metals in liquid ammonia or amines obey other rules than do the catalytic hydrogenations (D. Caine, 1976). In these reactions regio- and stereoselectivities are mainly determined by the stabilities of the intermediate carbanions. If one reduces, for example, the a, -unsaturated decalone below with lithium, a dianion is formed, whereof three different conformations (A), (B), and (C) are conceivable. Conformation (A) is the most stable, because repulsion disfavors the cis-decalin system (B) and in (C) the conjugation of the dianion is interrupted. Thus, protonation yields the trans-decalone system (G. Stork, 1964B). [Pg.103]

Single-bond cleavage with molecular hydrogen is termed hydrogenolysis. Palladium is the best catalyst for this purpose, platinum is not useful. Desulfurizations are most efficiently per-formed with Raney nickel (with or without hydrogen G.R. Pettit, 1962 A or with alkali metals in liquid ammonia or amines. The scheme below summarizes some classes of compounds most susceptible to hydrogenolysis. [Pg.113]

BIRCH hOCKEL - BENKESER Reduction Reduction ol aromatics, unsaturated ketones coniugated dienes by alkali metals in liquid ammonia or amines... [Pg.34]

The above results are concordant with the recent finding" that saturated alkyl fiuorides are not reduced by alkali metals in liquid ammonia at — 33°, although unsaturated fiuorides are reduced rapidly. All types of fiuoro compounds are reported to be reduced by metal-ammonia solutions at 0-25°. [Pg.6]

Solutions of alkali metals in liquid ammonia have been developed as versatile reducing agents which effect reactions with organic compounds that are otherwise difficult or impossible/ Aromatic systems are reduced smoothly to cyclic mono- or di-olefins and alkynes are reduced stereospecifically to frani-alkenes (in contrast to Pd/H2 which gives cA-alkenes). [Pg.79]

These compounds are in many ways analogous to the solutions of alkali metals in liquid ammonia (p. 77). [Pg.103]

Reaction with alkali metals in liquid NH3 leads to reductive coupling to give colourless crystals of... [Pg.308]

Alkali metal acetylides M2C2, MCCH and MCCR can readily be prepared by passing C2H2 or C2HR into solutions of the alkali metal in liquid NH3, and these can be used to synthesize a wide range of transition-element... [Pg.426]

Ni(CO)4] is readily oxidized by air and can be reduced by alkali metals in liquid ammonia or thf to yield a series of polynuclear carbonylate anion... [Pg.1168]

The reduction of aromatic compounds 1 by alkali metals in liquid ammonia in the presence of an alcohol is called the Birch reduction, and yields selectively the 1,4-hydrogenated product " 2. [Pg.43]

Alkali metals in liquid ammonia can transfer an electron to the solvent, leading to so-called solvated electrons. These can add to the aromatic substrate 1 to give a reduced species, the radical anion 3 ... [Pg.43]

Solution of alkali metals in liquid ammonia, containing the so-called solvating electrons, may be used as an alternative homogeneous system to initiate polymerization by an electron transfer process. This system suffers, however, from complications resulting from proton transfer from ammonia leading to the formation of NH2- ions, which in turn initiate further polymerization.4... [Pg.155]

This procedure is illustrative of the general method of reduction of aromatic compounds by alkali metals in liquid ammonia known as the Birch reduction. The theoretical and preparative aspects of the Birch reduction have been discussed in excellent reviews,4-4... [Pg.23]

In contrast, these metals dissolve and undergo reaction only very slowly in liquid ammonia. Solutions containing alkali metals in liquid ammonia have been known for more than 140 years, and they have properties that are extraordinary. The extent to which the metals dissolve is itself interesting. The solubilities are shown in Table 10.3. [Pg.340]

Solutions of alkali metals in liquid ammonia have been studied by many techniques. These include electrical conductivity, magnetic susceptibility, nuclear magnetic resonance (NMR), volume expansion, spectroscopy (visible and infrared), and other techniques. The data obtained indicate that the metals dissolve with ionization and that the metal ion and electron are solvated. Several simultaneous equilibria have been postulated to explain the unique properties of the solutions. These are generally represented as follows ... [Pg.341]

Reduction of a chemical species involves the gain of electrons by that species. Because the solutions of alkali metals in liquid ammonia contain free electrons, they are extremely strong reducing agents. This fact has been exploited in a large number of reactions. For example, oxygen can be converted to superoxide or peroxide ions. [Pg.342]

One of the most common techniques for preparing Zintl phases is by the reaction of a solution of the alkali metal in liquid ammonia with the other element. However, many of these materials are obtained by heating the elements. For example, heating barium with arsenic leads to the reaction... [Pg.368]

The electrolysis of quaternary ammonium salts in liquid ammonia gives blue solutions like those of the alkali metals in liquid ammonia.146... [Pg.71]

When anisole is reduced by an alkali metal in liquid ammonia either a stable, conjugated diolefin or a less stable, unconjugated diolefin can be isolated, the latter being the product when the reaction mixture is neutralized with a strong acid such as ammonium chloride. The free ions, whether they are present to any great extent or not, are the resonance hybrid LXVI. [Pg.201]

The alkali metals in liquid ammonia give deep coloured solutions which have been shown to contain solvated electrons. The unsaturated system takes up an electron to give an anion radical. There is evidence for this species from electron spin resonance studies. It accepts a proton from the solvent to give a radical which is reduced to a carbanion by another sodium atom. Finally the addition of a proton gives the reduced product. This proton is supplied by a protic solvent like enthanol and not from NH3. [Pg.291]

The polyhedral boranes and carboranes discussed above may be regarded as boron clusters in which the single external orbital of each vertex atom helps to bind an external hydrogen or other monovalent atom or group. Post-transition main group elements are known to form clusters without external ligands bound to the vertex atoms. Such species are called bare metal clusters for convenience. Anionic bare metal clusters were first observed by Zintl and co-workers in the 1930s [2-5], The first evidence for anionic clusters of post-transition metals such as tin, lead, antimony, and bismuth was obtained by potentiometric titrations with alkali metals in liquid ammonia. Consequently, such anionic post-transition metal clusters are often called Zintl phases. [Pg.17]

The Birch reduction has been used by several generations of synthetic organic chemists for the conversion of readily available aromatic compounds to alicyclic synthetic intermediates. Birch reductions are carried out with an alkali metal in liquid NH3 solution usually with a co-solvent such as THF and always with an alcohol or related acid to protonate intermediate radical anions or related species. One of the most important applications of the Birch reduction is the conversion of aryl alkyl ethers to l-alkoxycyclohexa-l,4-dienes. These extremely valuable dienol ethers provide cyclohex-3-en-l-ones by mild acid hydrolysis or cyclohex-2-en-l-ones when stronger acids are used (Scheme 1). [Pg.1]

Stilbene derivatives can be reduced with alkali metals in liquid ammonia. The reaction is usually performed in a homogeneous medium to give substituted diphenylethane compounds as a mixture of enantiomeric forms. However, there are compounds (particularly, biologically active ones) for which the stereospecificity of synthesis has decisive importance. A simple modification of the reduction method with an alkali metal in liquid ammonia was found (Collins and Hobbs 1983), which makes it possible to perform the process stereoselectively. The metal is not predissolved, as is usual, but is added in small portions without trying to make the reaction medium homogeneous. Stereoselectivity is ensured by carrying out the reduction on the surface of the metal and not in the solution bulk. [Pg.349]

It is logical to consider the nncleophile, Nu-, as a source of the electron to be transferred onto the snbstrate molecnle, RX. However, in most cases, the nucleophile is such a poor electron donor that electron transfer from Nn- to RX is extremely slow, if it is possible at all. These reactions reqnire an external stimulation in which a catalytic amount of electrons is injected. Such kinds of assistance to the reactions from photochemical and electrochemical initiations or from solvated electrons in the reaction mediums have been pointed out earlier. Alkali metals in liquid ammonia and sodium amalgam in organic solvents can serve as the solvated electron sources. Light initiation is also used widely. However, photochemical initiation complicates the reaction performance. [Pg.392]

Complexes. N- )o/ior Ligands. The reaction of manganese and the respective alkali metal in liquid ammonia yields the amide complexes M2Mn(NH2)4 (M = Na, K, Rb, or Cs). °... [Pg.189]

Similar stereoselectivity was noticed in reductions of ketones by alkali metals in liquid ammonia and alcohols. 4-rerr-Butylcyclohexanone gave almost exclusively the more stable equatorial alcohol, norcamphor 68-91% of the less stable e cfo-norborneol, and camphor a mixture of bomeol and isoborneol [860],... [Pg.115]

Reduction of benzenoid hydrocarbons with solvated electrons generated by the solution of an alkali metal in liquid ammonia, the Birch reaction [34], involves homogeneous electron addition to the lowest unoccupied 7t-molecular orbital. Protonation of the radical-anion leads to a radical intermediate, which accepts a further electron. Protonation of the delocalised carbanion then occurs at the point of highest charge density and a non-conjugated cyclohexadiene 6 is formed by reduction of the benzene ring. An alcohol is usually added to the reaction mixture and acts as a proton source. The non-conjugated cyclohexadiene is stable in the presence of... [Pg.243]

Electron-transfer initiation from other radical-anions, such as those formed by reaction of sodium with nonenolizable ketones, azomthines, nitriles, azo and azoxy compounds, has also been studied. In addition to radical-anions, initiation by electron transfer has been observed when one uses certain alkali metals in liquid ammonia. Polymerizations initiated by alkali metals in liquid ammonia proceed by two different mechanisms. In some systems, such as the polymerizations of styrene and methacrylonitrile by potassium, the initiation is due to amide ion formed in the system [Overberger et al., I960]. Such polymerizations are analogous to those initiated by alkali amides. Polymerization in other systems cannot be due to amide ion. Thus, polymerization of methacrylonitrile by lithium in liquid ammonia proceeds at a much faster rate than that initiated by lithium amide in liquid ammonia [Overberger et al., 1959]. The mechanism of polymerization is considered to involve the formation of a solvated electron ... [Pg.415]

Calcium reacts with phosphine in an analogous manner as the alkali metals. In liquid ammonia, solid Ca(PH2)2 nNHs is formed with hydrogen evolution 128,280) -pjjg corresponding reaction with a solution of elemental strontium in liquid ammonia does not lead to a uniform product. ... [Pg.28]

The dissolution of sulfur in ammonia has been known for more than 100 years [17]. The identification of the chemical species in these solutions was a matter of confusion until the identification of S4N and 83 , by Chivers and Lau [18] and Bernard et al. [19], using Raman spectroscopy. When considering the species formed in the dissolution process, it is quite remarkable that this dissolution is reversible sulfur is recovered after evaporation of ammonia. These solutions are strongly colored (blue), mainly due to the electronic absorption band of S4N at 580 nm. It must be mentioned that this dissolution is moderately fast at room temperature (but much slower than the dissolution of alkali metals) and that the rate is much slower when temperature decreases. It should also be mentioned that concentrated solutions of sulfur in liquid ammonia can be used as the solution at the positive electrode of a secondary battery. The solution at the negative electrode can be a solution of alkali metal in liquid ammonia [20], the electrodes being... [Pg.256]

Reactions with Protic, ionic, Poiar Reagents. The reactions of radical anions with proton donors include the reduction of arenes, the well-known Birch reduction, as well as alkynes by alkali metals in liquid ammonia. Both reactions have synthetic utility and belong to the few radical ion reactions included in elementary textbooks. [Pg.250]

For the anionic polymerization of methacrylonitrile (MAN), many initiators have been developed, which include alkali-metal alkyls such as butyllithium [42], triphenylmethylsodium [43], phenylisopropylpotassium [43], the disodium salt of living a-methylstyrene tetramer [44], alkali-metal amides [45], alkoxides [46], and hydroxide [47], alkali metal in liquid NH3 [48], quaternary ammonium hydroxide [49], and a silyl ketene acetal coupled with nucleophilic or Lewis acidic catalysts [50]. However, only a single example of the synthesis of PMAN with narrow molecular-weight distribution can be cited, and the reported number-average molecular weights were much higher than those calculated from the stoichiometry of the butyllithium initiator [42]. [Pg.71]


See other pages where Alkali metals in liquid is mentioned: [Pg.297]    [Pg.762]    [Pg.25]    [Pg.130]    [Pg.32]    [Pg.71]    [Pg.344]    [Pg.144]    [Pg.45]    [Pg.143]    [Pg.27]    [Pg.59]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Alkali metals, in liquid ammonia

Metallation of Nitriles with Alkali Amide in Liquid Ammonia

Reduction by solutions of alkali or alkaline-earth metals in liquid ammonia

Reduction of Metal Carbonyls with Alkali Metals and Sodium Tetrahydridoborate in Liquid Ammonia

© 2024 chempedia.info