Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol condensation transition state

Lewis acid promoted condensation of silyl ketene acetals (ester enolate equiv.) with aldehydes proceeds via "open" transition state to give anti aldols starting from either E- or Z- enolates. [Pg.86]

Propane, 1-propanol, and heavy ends (the last are made by aldol condensation) are minor by-products of the hydroformylation step. A number of transition-metal carbonyls (qv), eg, Co, Fe, Ni, Rh, and Ir, have been used to cataly2e the oxo reaction, but cobalt and rhodium are the only economically practical choices. In the United States, Texas Eastman, Union Carbide, and Hoechst Celanese make 1-propanol by oxo technology (11). Texas Eastman, which had used conventional cobalt oxo technology with an HCo(CO)4 catalyst, switched to a phosphine-modified Rh catalyst ia 1989 (11) (see Oxo process). In Europe, 1-propanol is made by Hoechst AG and BASE AG (12). [Pg.118]

According to this concept, the aldol condensation normally occurs through a chairlike transition state. It is further assumed that the stmcture of this transition state is sufficiently similar to that of chair cyclohexane to allow the conformational concepts developed for cyclohexane derivatives to be applied. Thus, in the example above, the reacting aldehyde is shown with R rather than H in the equatorial-like position. The differences in stability of the various transition states, and therefore the product ratios, are governed by the steric interactions between substituents. [Pg.468]

Williams56 argues that these aldol-type condensations do not proceed via cyclic, chairlike six-membered transition states, in contrast to previous arguments to the contrary58., ... [Pg.831]

This possible mechanism should be evaluated in relation to the catalysts. If the catalytic action is to be ascribed to the acid character of the catalysts, the condensation under consideration may differ from the ordinary aldol condensation, which is catalyzed preferentially by basic agents. Nevertheless, many condensations of the aldol type are effected with the aid of acidic reagents. Moreover, the condensation of sugars with dicarbonyl compounds has been carried out in aqueous alcoholic media which are non-acidic hence, there also exists the possibility of a mechanism catalyzed simultaneously by acid and by base, somewhat like that suggested by Lowry46 in another connection. A transition state with an amphiprotic structure has been postulated. Its formation can be catalyzed by either acids or bases. [Pg.125]

The ultimate goal of designing highly enantioselective aldol condensations demands that all stereochemical aspects of the bond construction process be kinetically controlled. Over the past 5 years, this objective has stimulated a great deal of research, and a wealth of new information is now becoming available on the important kinetic stereochemical control elements and possible transition state geometries for this reaction. [Pg.13]

In the titanium tetrachloride-promoted aldol condensations of stereochemically defined enolsilanes (eq. [58]) variable levels of aldol diastereoselection have been noted (Table 26) (73). A detailed analysis of this reaction in terms of probable intermediates and transition state awaits further studies however, some experimental observations suggest that titanium enolates may not be involved (73b). [Pg.55]

Recently, the improved chiral ethyl ketone (5)-141, derived in three steps from (5)-mandelic acid, has been evaluated in the aldol process (115). Representative condensations of the derived (Z)-boron enolates (5)-142 with aldehydes are summarized in Table 34b, It is evident from the data that the nature of the boron ligand L plays a significant role in enolate diastereoface selection in this system. It is also noteworthy that the sense of asymmetric induction noted for the boron enolate (5)-142 is opposite to that observed for the lithium enolate (5)-139a and (5>139b derived from (S)-atrolactic acid (3) and the related lithium enolate 139. A detailed interpretation of these observations in terms of transition state steric effects (cf. Scheme 20) and chelation phenomena appears to be premature at this time. Further applications of (S )- 41 and (/ )-141 as chiral propionate enolate synthons for the aldol process have appeared in a 6-deoxyerythronolide B synthesis recently disclosed by Masamune (115b). [Pg.85]

The central point of Evans s methodology is the induction of a 7t-enantiotopic facial differentiation through a conformationally rigid highly ordered transition state. Since the dialkylboron enolates of AT-acyl-2-oxazolidinones exhibit excellent syn-diastereoselectivity syn.anti >97 3) when reacted with a variety of aldehydes, Evans [14] studied the aldol condensation with the chiral equivalents 32 and 38. which are synthesised from fS)-valine (35) and the hydrochloride of (15, 2R)-norephedrine (36) (Scheme 9.11), respectively, and presently are commercially available. [Pg.246]

Darzens reaction of (-)-8-phenylmethyl a-chloroacetate (and a-bromoacetate) with various ketones (Scheme 2) yields ctT-glycidic esters (28) with high geometric and diastereofacial selectivity which can be explained in terms of both open-chain or non-chelated antiperiplanar transition state models for the initial aldol-type reaction the ketone approaches the Si-f ce of the Z-enolate such that the phenyl ring of the chiral auxiliary and the enolate portion are face-to-face. Aza-Darzens condensation reaction of iV-benzylideneaniline has also been studied. Kinetically controlled base-promoted lithiation of 3,3-diphenylpropiomesitylene results in Z enolate ratios in the range 94 6 (lithium diisopropylamide) to 50 50 (BuLi), depending on the choice of solvent and temperature. ... [Pg.356]

Most enolates can exist as two stereoisomers. Also, most aldol condensation products formed from a ketone enolate and an aldehyde can have two diastereomeric structures. These are designated as syn and anti. The cyclic-transition-state model provides a basis for understanding the relationship between enolate geometry and the stereochemistry of the aldol product. [Pg.65]

Other structural features may influence the stereoselectivity of aldol condensations. One such factor is chelation by a donor substituent.68 69 Several /i-alkoxyaldchydcs show a preference for vyw-aldol products on reaction with Z-enolates. A chelated transition state can account for the observed stereochemistry.70 The chelated aldehyde is most easily... [Pg.84]

The synthesis in Scheme 13.30 uses stereoselective aldol condensation methodology. Both the lithium enolate and the boron enolate method were employed. The enol derivatives were used in enantiomerically pure form, so the condensations are examples of double stereodifferentiation (Section 2.1.3). The stereoselectivity observed in the reactions is that predicted for a cyclic transition state for the aldol condensations. [Pg.872]

In the presence of strong bases, aldol condensation fails. The reason for this lies in the sluggish reactivity of anion (39 ) (Section III,B). When 39a is substituted by 3-propionyltetramic acid 39c the yield sags to 0%, obviously an expression for the high steric requirements in the transition state (87TH2). [Pg.159]

Aldol reactions of magnesium enolates are frequently more diastereoselective than the corresponding reactions of lithium enolates. The aldol condensation proceeds via a cyclic transition state in agreement with the Zimmerman-Traxler chelated model . [Pg.482]

A significant decrease in reactivity was observed when the IV-aryl zinc enamide generated from 4-methylaniline was used. It was suggested that this 2-methyl effect on reactivity may arise from a steric effect contributing to the conformational stabilization of the transition state. These recent results have thus greatly expanded the scope of the so-called olefinic aldol condensation as the experimental procedure is quite simple and applicable to a variety of monosubstituted or aqa-disubstituted alkenes. [Pg.971]

Enantioselective condensation of aldehydes and enol silyl ethers is promoted by addition of chiral Lewis acids. Through coordination of aldehyde oxygen to the Lewis acids containing an Al, Eu, or Rh atom (286), the prochiral substrates are endowed with high electrophilicity and chiral environments. Although the optical yields in the early works remained poor to moderate, the use of a chiral (acyloxy)borane complex as catalyst allowed the erythro-selective condensation with high enan-tioselectivity (Scheme 119) (287). This aldol-type reaction may proceed via an extended acyclic transition state rather than a six-membered pericyclic structure (288). Not only ketone enolates but ester enolates... [Pg.123]

When an ionic organic reaction (the kind catalyzed by most enzymes) occurs a nucleophilic center joins with an electrophilic center. We use arrows to show the movement of pairs of electrons. Tire movement is always away from the nucleophile which can be thought of as "attacking" an electrophilic center. Notice the first step in the second example at right. The unsaturated ketone is polarized initially. However, this is not shown as a separate step. Rather, the flow of electrons from the double bond, between the a- and (1-carbons into the electron-accepting C=0 groups, is coordinated with the attack by the nucleophile. Dotted lines are often used to indicate bonds that will be formed in a reaction step, e.g., in an aldol condensation (right). Dashed or dotted lines are often used to indicate partially formed and partially broken bonds in a transition state, e.g., for the aldol condensation (with prior protonation of the aldehyde). However, do not put arrows on transition state structures. [Pg.529]

Kinetic template effects have been postulated in more typical organic aldol condensations, where metals such as lithium and zinc are likely to coordinate both the enolate or enamine nucleophile and the aldehyde in the transition state. The examples shown in Schemes 58184 and 59185 are illustrative of these reactions and the degree of selectivity obtained. The carboxylation of ketones and nitroalkanes by methyl magnesium carbonate to produce P-keto acids and a-nitro acids respectively provides early examples of similar reactions (Scheme 60).186 187 See also Section 61.1.4.4. [Pg.450]


See other pages where Aldol condensation transition state is mentioned: [Pg.247]    [Pg.457]    [Pg.454]    [Pg.618]    [Pg.831]    [Pg.618]    [Pg.831]    [Pg.186]    [Pg.52]    [Pg.5]    [Pg.15]    [Pg.19]    [Pg.20]    [Pg.33]    [Pg.50]    [Pg.53]    [Pg.62]    [Pg.101]    [Pg.234]    [Pg.240]    [Pg.437]    [Pg.1267]    [Pg.234]   
See also in sourсe #XX -- [ Pg.54 ]




SEARCH



Aldol condensate

Aldol condensation

Aldol transition states

Condensation transition

Condensations aldol condensation

Condensed states

© 2024 chempedia.info