Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol condensation diastereoselectivity

A likely cyclic transition state makes the Mukaiyama aldol condensation diastereoselective, that is, strongly favoring one diastereomer of the product. Addition of a chiral ligand or chelator (such as a chiral diamine) can make the process enantioselective as well, that is, favoring one enantiomer. [Pg.102]

Diastereoselective Aldol Condensation with Boron Enolates... [Pg.84]

The key step to this first reported case of the highly diastereoselective addition of a fluorinated enolate in an aldol process is the selective formation of the enolate a,a-Difluonnated enolates prepared by a metallation process employing either a zinc-copper couple [S] or reduced titanium species [9] undergo aldol condensation smoothly (equation 9) (Table 5)... [Pg.617]

Ketene acetals prepared from fluorinated esters by trimethylsilylation undergo Lewis acid-promoted aldol condensations giving satisfactory yields but low diastereoselectivity [27] (equation 22). [Pg.628]

In contrast, the diastereoselectivity of the conjugate addition of a chiral alkenylcoppcr-phosphinc complex to 2-mcthyl-2-cyclopentenone was dictated by the chirality of the reagent63. The double Michael addition using the cyclopentenone and 3-(trimethylsilyl)-3-buten-2-one and subsequent aldol condensation gave 4 in 58 % overall yield. The first Michael addition took place from the less hindered face of the m-vinylcopper, in which chelation between copper and the oxygen atom fixed the conformation of the reagent. [Pg.913]

A very efficient method for annulations158 is based on the addition of lithium or silyl enolates to a-silylated enones as a key step. The diastereoselective 1,4-addition is followed by an aldol condensation. This procedure allows Michael additions under aprotic conditions, whereby the silyl substituent stabilizes the enolate of the Michael adduct preventing polymerization of the enone, 59 l63. [Pg.970]

Base-catalyzed aldol reactions have been carried out intramole-cularly.241 The aqueous acid-catalyzed intramolecular aldol condensation of 3-oxocyclohexaneacetaldehyde proceeded diastereoselectively (Eq. 8.95).242... [Pg.267]

Diastereoselective aldol condensations.1 The aldol condensation of a chiral ethyl ketone such as 2 with aldehydes catalyzed by Bu2BOTf gives a mixture of all four possible diastereomeric adducts with little or no stereocontrol. In contrast, reactions catalyzed by either (+)- or (- )-l are highly diastereoselective. By proper choice of (+)- and (- )-l and of (+)- and (- )-2, each one of the four possible 1,2-yyn-diastereomers can be obtained in high purity. [Pg.139]

Diastereoselective synthesis of lactones.1 Acylation of the enolate (LDA) of the vinylogous urethane (1) results in a product (2) that on reduction with LiBH[CH(CH3)C2H5]3 (3) forms the anft-lactone (4) exclusively (equation I). This two-step synthesis of lactones is the equilvalent of an aldol condensation between... [Pg.195]

Diastereoselective aldol condensations. This furan (1) can undergo condensation with aldehydes as a butenolide to form 8-hydroxy-a,(3-unsaturated--y-lactones (2). The diastereoselectivity can be controlled by the choice of catalyst. Lewis... [Pg.330]

Diastereomeric excesses of up 56% have been claimed for the preparation of a-amino-P-hydroxy acids via the aldol condensation of aldehydes with f-butyl N-(diphenylmethylene)glycinate [63]. It might be expected that there would be thermodynamic control of the C-C bond formation influenced by the steric requirements of the substituents, but the use of cinchoninium and cinchonidinium salts lead to essentially the same diastereoselectivity. The failure of both tetra-n-butylammo-nium and benzyltriethylammonium chloride to catalyse the reaction is curious. [Pg.531]

Traditional models for diastereoface selectivity were first advanced by Cram and later by Felkin for predicting the stereochemical outcome of aldol reactions occurring between an enolate and a chiral aldehyde. [37] During our investigations directed toward a practical synthesis of dEpoB, we were pleased to discover an unanticipated bias in the relative diastereoface selectivity observed in the aldol condensation between the Z-lithium enolate B and aldehyde C, Scheme 2.6. The aldol reaction proceeds with the expected simple diastereoselectivity with the major product displaying the C6-C7 syn relationship shown in Scheme 2.7 (by ul addition) however, the C7-C8 relationship of the principal product was anti (by Ik addition). [38] Thus, the observed symanti relationship between C6-C7 C7-C8 in the aldol reaction between the Z-lithium enolate of 62 and aldehyde 63 was wholly unanticipated. These fortuitous results prompted us to investigate the cause for this unanticipated but fortunate occurrence. [Pg.22]

Earlier studies had demonstrated that such enolates would participate in aldol condensations with aldehydes however, the stereochemical aspects of the reaction were not investigated (68). For the cases summarized in Table 25, the zirconium enolates were prepared from the corresponding lithium enolates (eq. [54]). Control experiments indicated that no alteration in enolate geometry accompanies this ligand exchange process, and that the product ratio is kinetically controlled (35). From the cases illustrated, both ( )-enolates (entries A-E) and (Z)-enolates (entries F-H) exhibit predominant kinetic erythro diastereoselection. Although a detailed explanation of these observations is clearly speculative, certain aspects of a probable... [Pg.51]

In the titanium tetrachloride-promoted aldol condensations of stereochemically defined enolsilanes (eq. [58]) variable levels of aldol diastereoselection have been noted (Table 26) (73). A detailed analysis of this reaction in terms of probable intermediates and transition state awaits further studies however, some experimental observations suggest that titanium enolates may not be involved (73b). [Pg.55]

Related reactions, catalyzed by tetra-n-butylammonium fluoride (TBAF), have been reported (74). Under the influence of 5 to 10 mol % of TBAF (THF, -78°C), enolsilane 75 afforded the erythro and threo adducts 76E and 76T whose ratios were time dependent (5 min, E T =1 2 10.5 hr, E T =1 3) (74). The reaction of enolsilane 77 at various temperatures has also been reported (2). At -78 C (1 hr) complete kinetic erythro diastereoselection was observed under the conditions reported by Noyori (74), but at higher temperatures product equilibration was noted (2). It is significant that the kinetic aldol condensation of this tetraalkylammonium enolate exhibits complete erythro selection as noted for the analogous lithium derivative. [Pg.55]

Extensive investigations have been directed toward the development of chiral ester enolates that might exhibit practical levels of aldol asymmetric induction. Much of the early work in this area has been reviewed (111). In general, metal enolates derived from chiral acetate and propionate esters exhibit low levels of aldol asymmetric induction that rarely exceed 50% enantiomeric excess. The added problems associated with the low levels of aldol diastereoselection found with most substituted ester enolates (cf. Table 11) further detract from their utility as effective chiral enolates for the aldol process. Recent studies have examined the potential applications of the chiral propionates 121 to 125 in the aldol condensation (eq. [94]), and the observed erythro-threo diastereoselection and diastere-oface selection for these enolates are summarized in Table 31. For the six lithium enolates the threo diastereoselection was found to be... [Pg.79]

The aldol condensations of the chiral lithium enolate 132 have been demonstrated to exhibit excellent erythro diastereoselection as... [Pg.80]

The utility of chiral oxazoline enolates in asymmetric synthesis has elegantly been demonstrated by Myers (106,120). The stereoselective aldol condensations of these enolates have been examined in a hmited number of cases (eq. [107]) (32,121). Assuming that the enolate formed has the geometry indicated in 164 (120b), the diastereoselection observed for both the aldol condensation and the previously reported alkylations favors electrophile attack on the Re face as indicated. In contrast, the unsubstituted enolate 163b exhibits significantly poorer diastereoface selection with a range of aldehydes (eq. [108]) (121). [Pg.95]

The first chapter in this volume is a particularly timely one given the recent surge of activity in natural product synthesis based upon stereocontrolled Aldol Condensations. D. A. Evans, one of the principal protagonists in this effort, and his associates, J. V. Nelson and T. R. Taber, have surveyed the several modem variants of the Aldol Condensation and discuss models to rationalize the experimental results, particularly with respect to stereochemistry, in a chapter entitled Stereoselective Aldol Condensations. The authors examine Aldol diastereoselection under thermodynamic and kinetic control as well as enantioselection in Aldol Condensations involving chiral reactants. [Pg.500]

Diastereoselective aldol condensations and related reactions. The geometry of enolates... [Pg.234]

A further step towards improved selectivity in aldol condensations is found in the work of David A. Evans. The work of Evans [3a] [14] is based in some early observations from Meyers laboratory [15] and the fact that boron enolates may be readily prepared under mild conditions from ketones and dialkylboron triflates [16]. Detailed investigations with Al-propionylpyrrolidine (31) indicate that the enolisation process (LDA, THE) affords the enolate 32 with at least 97% (Z>diastereoselection (Scheme 9.8). Finally, the observation that the inclusion of potential chelating centres enhance aldol diastereoselection led Evans to study the boron enolates 34 of A(-acyl-2-oxazolidones (33), which allow not only great diastereoselectivity (favouring the 5yn-isomer) in aldol condensations, but offer a possible solution to the problem of enantioselective total syntheses (with selectivities greater than 98%) of complex organic molecules (see below, 9.3.2), by using a recyclisable chiral auxiliary. [Pg.239]

The central point of Evans s methodology is the induction of a 7t-enantiotopic facial differentiation through a conformationally rigid highly ordered transition state. Since the dialkylboron enolates of AT-acyl-2-oxazolidinones exhibit excellent syn-diastereoselectivity syn.anti >97 3) when reacted with a variety of aldehydes, Evans [14] studied the aldol condensation with the chiral equivalents 32 and 38. which are synthesised from fS)-valine (35) and the hydrochloride of (15, 2R)-norephedrine (36) (Scheme 9.11), respectively, and presently are commercially available. [Pg.246]

DIASTEREOSELECTIVE ALDOL CONDENSATION USING A CHIRAL OXA2DLIOINONE AUXILIARY (2S, 3S )-3-HYDR0XY-3-PHENYL-2-METHYLPR0PAN0IC ACID... [Pg.170]

At low temperatures, the Zn enolate derived from dimethyl 3-methylpent-2-endioate 39 reacts with aldehydes in a one-pot aldolisation and cyclisation to yield the syn-dihydropyran-2-one 40. At the higher temperatures necessary to achieve reaction with a-aminoaldehydes, the anri-products predominate indicating thermodynamic control (Scheme 22) <99T7847>. An aldol condensation features in the asymmetric synthesis of phomalactone. The key step is the reaction of the enolate of the vinylogous urethane 41 with crotonaldehyde which occurs with 99% syn-diastereoselectivity and in 99% ee (Scheme 23) <99TL1257>. [Pg.326]

Aldol reactions of magnesium enolates are frequently more diastereoselective than the corresponding reactions of lithium enolates. The aldol condensation proceeds via a cyclic transition state in agreement with the Zimmerman-Traxler chelated model . [Pg.482]

Borrelidin 1 has attracted attention because it inhibits angiogenesis, and so potentially blocks tumor growth, with an IC of 0.8 nM. Retrosynthetic analysis of 1 led the investigators to the prospective intermediates 2 and 3. To assemble these two fragments, they interatively deployed the elegant enantio- and diastereoselective intermolecular reductive ester aldol condensation that they had recently developed. This transformation is exemplified by the homologation of 4 to 6 catalyzed by the enantiomerically-pure Ir complex 5. [Pg.8]


See other pages where Aldol condensation diastereoselectivity is mentioned: [Pg.120]    [Pg.120]    [Pg.331]    [Pg.161]    [Pg.272]    [Pg.61]    [Pg.98]    [Pg.15]    [Pg.20]    [Pg.32]    [Pg.33]    [Pg.40]    [Pg.50]    [Pg.88]    [Pg.233]    [Pg.259]    [Pg.558]    [Pg.321]    [Pg.189]    [Pg.520]    [Pg.520]   
See also in sourсe #XX -- [ Pg.741 , Pg.744 , Pg.769 , Pg.770 , Pg.771 , Pg.772 ]




SEARCH



Aldol condensate

Aldol condensation

Aldol condensation diastereoselection

Aldol diastereoselective

Condensations aldol condensation

Diastereoselective aldol condensations

Diastereoselectivity aldols

© 2024 chempedia.info