Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes nitrogen additions

Aldehydes and ketones may frequently be identified by their semicarbazones, obtained by direct condensation with semicarbazide (or amino-urea), NH,NHCONH a compound which is a monacidic base and usually available as its monohydrochloride, NHjCONHNH, HCl. Semicarbazones are particularly useful for identification of con jounds (such as acetophenone) of which the oxime is too soluble to be readily isolated and the phenylhydrazone is unstable moreover, the high nitrogen content of semicarbazones enables very small quantities to be accurately analysed and so identified. The general conditions for the formation of semicarbazones are very similar to those for oximes and phenylhydrazones (pp. 93, 229) the free base must of course be liberated from its salts by the addition of sodium acetate. [Pg.258]

The main example of a category I indole synthesis is the Hemetsberger procedure for preparation of indole-2-carboxylate esters from ot-azidocinna-mates[l]. The procedure involves condensation of an aromatic aldehyde with an azidoacetate ester, followed by thermolysis of the resulting a-azidocinna-mate. The conditions used for the base-catalysed condensation are critical since the azidoacetate enolate can decompose by elimination of nitrogen. Conditions developed by Moody usually give good yields[2]. This involves slow addition of the aldehyde and 3-5 equiv. of the azide to a cold solution of sodium ethoxide. While the thermolysis might be viewed as a nitrene insertion reaction, it has been demonstrated that azirine intermediates can be isolated at intermediate temperatures[3]. [Pg.45]

The carbon-nitrogen triple bond of nitriles is much less reactive toward nucleophilic addition than is the carbon-oxygen double bond of aldehydes and ketones Strongly basic nucleophiles such as Gngnard reagents however do react with nitriles in a reaction that IS of synthetic value... [Pg.871]

The addition of phenylisocyanate to aldehyde-derived enamines resulted in the formation of aminobutyrolactams (438,439). As aminal derivatives these produets can be hydrolyzed to the linear aldehyde amides and thus furnish a route to derivatives of the synthetically valuable malonaldehyde-acid system. With this class of reactions, a second acylation on nitrogen becomes possible and the six-membered cyclization products have been reported (440). Closely related to the reactions of enamines with isocyanates is the condensation of cyclohexanone with urea in base (441). [Pg.398]

Nonyl aldehyde (32.66 g, 0.23 mol) and furan (200 mL, 187.2 g, 2.75 mol) were mixed in a 250-mL photolysis flask equipped with a quartz immersion well containing a Vycor filter and a 450-W Hanovia Lamp. The system was kept at -20° C with an isopropyl alcohol bath cooled by a Cryocool Immersion Cooler (CClOO). Nitrogen was bubbled throughout the duration of the reaction, and the solution was stirred vigorously. Additional furan (150 mL, 140.4 g, 2.06 mol) was added during the course of the reaction. TLC analysis indicated completion of the reaction after 20 h. After evaporation of excess furan and NMR analysis of the resultant oil (48.70 g, ca. 100%) indicated the desired photoadduct had been formed, without contamination from unreacted nonyl aldehyde. [Pg.49]

When the additional nitrogen atom is included in one of the aromatic rings, on the other hand, there is obtained a compound with antihistaminic properties. Reaction of the Grignard reagent from 4-chlorobromobenzene with pyridine-2-aldehyde gives the benzhydrol analog (12). The alcohol is then converted to its sodium salt by means of sodium, and this salt is alkylated with W-C2-chloroethyl)dimethylamine. Carbinoxamine (13) is thus obtained. ... [Pg.43]

O Nucleophilic addition of a secondary amine to the ketone or aldehyde, followed by proton transfer from nitrogen to oxygen, yields an intermediate carbinolamine in the normal way. [Pg.713]

In addition to ketone enolates, azaenolatcs with chiral auxiliary groups attached to the nitrogen atom are suitable for the introduction of an a-unsubstituted enolate of the keto-type into an aldehyde in a stereoselective manner (see Section D.1.3.5.). [Pg.474]

As outlined in Section D.2.3.5., the stereochemical outcome of the addition of nucleophilic reagents to chiral aldehydes or ketones is rationalized most plausibly by the Cram-Felkin-Anh model. On the other hand, the corresponding reactions of oxygen- or nitrogen-heterosub-stituted aldehydes or ketones may be interpreted either by the same transition state hypothesis or, alternatively, by Cram s cyclic model. [Pg.563]

Aldehydes, formates, primary, and secondary alcohols, amines, ethers, alkyl halides, compounds of the type Z—CH2—Z, and a few other compounds add to double bonds in the presence of free-radical initiators/ This is formally the addition of RH to a double bond, but the R is not just any carbon but one connected to an oxygen or a nitrogen, a halogen, or to two Z groups (defined as on p. 548). The addition of aldehydes is illustrated above. Formates and formamides " add similarly ... [Pg.1034]

The addition of ammonia to aldehydes or ketones does not generally give useful products. According to the pattern followed by analogous nucleophiles, the initial products would be expected to be hemiaminals, but these compounds are generally unstable. Most imines with a hydrogen on the nitrogen spontaneously poly-... [Pg.1186]

Double asymmetric induction operates when the azomethine compound is derived from a chiral a-amino aldehyde and a chiral amine, e.g., the sulfin-imine 144 [70]. In this case, the R configuration at the sulfur of the chiral auxihary, N-tert-butanesulfinamide, matched with the S configuration of the starting a-amino aldehyde, allowing complete stereocontrol to be achieved in the preparation of the diamine derivatives 145 by the addition of trifluo-romethyl anion, which was formed from trifluoromethyltrimethylsilane in the presence of tetramethylammonium fluoride (Scheme 23). The substituents at both nitrogen atoms were easily removed by routine procedures see, for example, the preparation of the free diamine 146. On the other hand, a lower diastereoselectivity (dr 80 20) was observed in one reaction carried out on the imine derived from (it)-aldehyde and (it)-sulfinamide. [Pg.28]


See other pages where Aldehydes nitrogen additions is mentioned: [Pg.156]    [Pg.95]    [Pg.175]    [Pg.125]    [Pg.79]    [Pg.208]    [Pg.320]    [Pg.506]    [Pg.150]    [Pg.456]    [Pg.346]    [Pg.73]    [Pg.27]    [Pg.344]    [Pg.67]    [Pg.37]    [Pg.169]    [Pg.33]    [Pg.147]    [Pg.55]    [Pg.326]    [Pg.553]    [Pg.113]    [Pg.86]    [Pg.115]    [Pg.143]    [Pg.170]    [Pg.172]    [Pg.471]    [Pg.892]    [Pg.627]    [Pg.83]    [Pg.1189]    [Pg.29]    [Pg.115]    [Pg.37]    [Pg.236]    [Pg.627]   
See also in sourсe #XX -- [ Pg.765 ]




SEARCH



ADDITION OF NITROGEN COMPOUNDS TO ALDEHYDES AND KETONES

Addition aldehydes

Nitrogen addition

© 2024 chempedia.info