Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehyde Mannich-type reactions

When acetone was used instead of an aldehyde, Mannich-type reaction did not proceed and compound 19 was produced. [Pg.26]

On the other hand, Kobayashi has developed a Bronsted acid-combined catalyst for aqueous Mannich-type reactions. Three-component Mannich-type reactions of aldehydes, amines, and ketones (e.g., benzaldehyde, p-anisidinc. and cyclohexanone) were efficiently... [Pg.349]

Officially, the history of MCRs dates back to the year 1850, with the introduction of the Strecker reaction (S-3CR) describing the formation of a-aminocyanides from ammonia, carbonyl compounds, and hydrogen cyanide [4]. In 1882, the reaction progressed to the Hantzsch synthesis (H-4CR) of 1,4-dihydropyridines by the reaction of amines, aldehydes, and 1,3-dicarbonyl compounds [5], Some 25 years later, in 1917, Robinson achieved the total synthesis of the alkaloid tropinone by using a three-component strategy based on Mannich-type reactions (M-3CR) [6]. In fact, this was the earliest application of MCRs in natural product synthesis [7]. [Pg.543]

Recently, ruthenium-catalyzed tandem olefin migration/aldol-type or Mannich-type reactions have been developed with aldehydes or imines and allylic alcohols (Scheme 74). [Pg.443]

Lewis acids as water-stable catalysts have been developed. Metal salts, such as rare earth metal triflates, can be used in aldol reactions of aldehydes with silyl enolates in aqueous media. These salts can be recovered after the reactions and reused. Furthermore, surfactant-aided Lewis acid catalysis, which can be used for aldol reactions in water without using any organic solvents, has been also developed. These reaction systems have been applied successfully to catalytic asymmetric aldol reactions in aqueous media. In addition, the surfactant-aided Lewis acid catalysis for Mannich-type reactions in water has been disclosed. These investigations are expected to contribute to the decrease of the use of harmful organic solvents in chemical processes, leading to environmentally friendly green chemistry. [Pg.4]

Quite recently, not only Lewis adds, but also Bronsted adds were found to be effedive catalysts for the three-component Mannich-type reactions in water with the aid of a surfadant. For example, Akiyama and co-workers1301 have reported that a combination of HBF4 and SDS is effedive for the readions of aldehydes, amines, and silyl enolates. We have found that dodecylbenzenesulfonic add (DBSA), a Bronsted add with a surfadant moiety, also catalyzes the reactions in water.1311 Furthermore, DBSA can be used for the dired Mannich-type reactions of aldehydes, amines, and ketones, without using silyl enolates as nucleophilic components (Eq. 8).1321... [Pg.10]

T. Akiyama, J. Takaya, H. Kagoshima, One-Pot Mannich-Type Reaction in Water HBF4 Catalyzed Condensation of Aldehydes, Amines, and Silyl Enolates for the Synthesis of (5-Amino Carbonyl Compounds Synlett. 1999,1426-1428. [Pg.12]

Aldol reactions of silyl enolates are promoted by a catalytic amount of transition metals through transmetallation generating transition metal enolates. In 1995, Shibasaki and Sodeoka reported an enantioselective aldol reaction of enol silyl ethers to aldehydes using a Pd-BINAP complex in wet DMF. Later, this finding was extended to a catalytic enantioselective Mannich-type reaction to a-imino esters by Sodeoka s group [Eq. (13.21)]. Detailed mechanistic studies revealed that the binuclear p-hydroxo complex 34 is the active catalyst, and the reaction proceeds through a palladium enolate. The transmetallation step would be facilitated by the hydroxo ligand transfer onto the silicon atom of enol silyl ethers ... [Pg.394]

In parallel to the bismuth(III)-catalyzed three-component allylation reaction, we have reported the corresponding three-component bismuth(III)-catalyzed Mannich-type reaction. A major merit of the three-component reaction is indeed that many unique structures can be afforded rapidly when three or more reactants are combined in a single step to afford new compounds. The development of an efficient bismuth-catalyzed Mannich-type three-component reaction that combines an aldehyde, an amine, and a silyl enolate to give compounds with a (3-amino carbonyl core... [Pg.88]

Several examples of Bi(OTf)3-catalyzed Mannich-type reactions with various silyl enol ethers are summarized in Table 12. Silyl enol ethers derived from aromatic and aliphatic ketones were reacted with an equimolar mixture of aldehyde and aniline (Scheme 10). The corresponding (3-amino ketones 27 were obtained in good yields (Table 12, entries 1M-) from aromatic-derived silyl enol ethers, except for the more hindered isobutyrophenone derivative. Silyl enol ethers derived from cyclopentanone or cyclohexanone afforded the (3-amino ketones in good yields (Table 12, entries 5 and 6). [Pg.90]

Scheme 10 Bi(0Tf)3-4H20-cataIyzed Mannich-type reaction involving various aldehydes, amines, and silyl enolates... Scheme 10 Bi(0Tf)3-4H20-cataIyzed Mannich-type reaction involving various aldehydes, amines, and silyl enolates...
Examples of the Bronsted-acid catalysts and hydrogen-bond catalysts are shown in Figure 2.1. We have recently reported the Mannich-type reaction of ketene silyl acetals with aldimines derived from aromatic aldehyde catalyzed by chiral phosphoric acid 7 (Figure 2.2, Scheme 2.6) [12]. The corresponding [5-amino esters were obtained with high syn-diastereoselectivities and excellent enantioselectivities. [Pg.9]

Polystyrene-bound allylsilanes react with /V-(alkoxycarbonyl)imincs under Lewis acid catalysis to yield /V-homoallylcarbamates (Entry 4, Table 14.9). Similarly, Wang resin bound carbamates have been successfully N-alkylated with allylsilanes and aldehydes in a Mannich-type reaction (Entry 5, Table 14.9). Resin-bound /V-(alkoxycarbo-nyl)imines can be generated either from unsubstituted carbamates ROCONH2 by... [Pg.380]

In 1997, Kobayashi and colleagues reported the first truly catalytic enantioselective Mannich-type reactions of aldimines 24 with silyl enolates 37 using a novel chiral zirconium catalyst 38 prepared from zirconium (IV) fert-butoxide, 2 equivalents of (R)-6,6 -dibromo-l,l -bi-2-naphthol, and N-methylimidazole (Scheme 13) [27, 28], In addition to imines derived from aromatic aldehydes, those derived from heterocyclic aldehydes also worked well in this reaction, and good to high yields and enantiomeric excess were obtained. The hydroxy group of the 2-hydroxyphenylimine moiety, which coordinates to the zirconium as a bidentate ligand, is essential to obtain high selectivity in this method. [Pg.114]

A direct asymmetric reductive Mannich-type reaction that allows for the formation of three contiguous stereocentres with high chemo-, diastereo-, and enantio-selectivity (10 1 to 50 1 dr, 96-99% ee ) has been presented (Scheme 4). The reaction commences with the formation of the corresponding iminium ion from aldehyde (122) and prolinol (g) catalyst (125), followed by conjugate reduction with Hantzsch ester (123) to generate an enamine, which then undergoes Mannich reaction with imine (124) to produce (126).179... [Pg.351]

Diastereoselective Mannich-type reactions between ketene silyl acetals and chiral sulfinimines using simple metal-free Lewis bases such as tetraalkylammonium car-boxylates have been reported. The sulfinimine can even be generated in situ (from aldehyde and a chiral sulfonamide), using cesium carbonate, followed by addition of ketene silyl acetal at -78 °C, and as little as 1 mol% of catalyst.32... [Pg.6]

In Yb(OTf)3-catalyzed Mannich-type reaction of the imine with silicon enolate conducted in SCCO2, the desired product is obtained in only 10 % yield after 3 h due to the low solubility of reactants in scC02 (Scheme 3.11, R1, R2, R3, R4, Rs=Ph, Bn, Me, Me, OMe) [57]. Addition of PEG is found to improve the yield to 72 %. The formation of emulsions can be observed in the presence of PEG. The highest yield (72 %) can be reached at 15 MPa CO2 pressure using PEG400 (MW = 400). This system has been applicable to various substrates including imines derived from aromatic and heterocyclic as well as aliphatic aldehydes and silicon enolates derived from esters, thioesters, and a ketone as depicted in Scheme 3.11. [Pg.26]

The similarity between mechanisms of reactions between proline- and 2-deoxy-ribose-5-phosphate aldolase-catalyzed direct asymmetric aldol reactions with acetaldehyde suggests that a chiral amine would be able to catalyze stereoselective reactions via C-H activation of unmodified aldehydes, which could add to different electrophiles such as imines [36, 37]. In fact, proline is able to mediate the direct catalytic asymmetric Mannich reaction with unmodified aldehydes as nucleophiles [38]. The first proline-catalyzed direct asymmetric Mannich-type reaction between aldehydes and N-PMP protected a-ethyl glyoxylate proceeds with excellent chemo-, diastereo-, and enantioselectivity (Eq. 9). [Pg.367]

The corresponding /i-amino aldehydes are reduced in situ and the corresponding amino alcohols are isolated in good yield with up to >99 % ee. The Mannich reactions proceed with excellent chemoselectivity and inline formation occurs with the acceptor aldehyde at a faster rate than C-C bond-formation. Moreover, the one-pot three-component direct asymmetric cross-Mannich reaction enables aliphatic aldehydes to serve as acceptors. The absolute stereochemistry of the reaction was determined by synthesis and reveled that L-proline provides syn /i-amino aldehydes with (S) stereochemistry of the amino group. In addition, the proline-catalyzed direct asymmetric Mannich-type reaction has been connected to one-pot tandem cyanation and allylation reaction in THF and aqueous media affording functional a-amino acid derivatives [39, 42]. [Pg.369]

Aldol and Mannich-Type Reactions 27 Table 2.6 (S)-Proline-catalyzed cross-aldol reactions of aldehyde donors.3)... [Pg.27]

Mannich-Type Reactions of Aldehyde Donors with Glyoxylate Imines... [Pg.38]

S)-Proline has been used to catalyze Mannich-type reactions of enolizable carbonyl donors. Reactions of unmodified aldehydes and N-p-methoxyphenyl (PMP)-protected glyoxylate imine in the presence of a catalytic amount of (S)-proline at room temperature afforded enantiomerically enriched / -aminoaldehydes, as... [Pg.38]

Table 2.10 (S)-Proline-catalyzed Mannich-type reactions of aldehyde donors and /N/-PMP-protected glyoxylate imine [71 a,b]. Table 2.10 (S)-Proline-catalyzed Mannich-type reactions of aldehyde donors and /N/-PMP-protected glyoxylate imine [71 a,b].
Table 2.12 ont/ -Mannich-type reactions of aldehyde donors and N-PMP-protected glyoxylate imine catalyzed by (3/ ,5/ )-5-methyl-3-pyrrolidine-carboxylic acid (13) [73]. [Pg.41]

Proline derivatives, such as (2S,4R)-4-hydroxyproline (2), (2S,4R)-4-tert-butoxy-proline, (2S,3S)-3-hydroxyproline [71b] and tetrazole-containing pyrrolidine 9 [75] also catalyzed the Mannich-type reactions using aldehydes as nucleophiles via enamine intermediates, and afforded the syn-isomer as the major diaster-eomer with high enantioselectivity at room temperature. On the other hand,... [Pg.42]

Fig. 2.3 Catalysts for the Mannich-type reactions of aldehydes and glyoxylate imines that use m-s/tu-gene rated enamine intermediates and that selectively afford (a) syn-products or (b) ont/ -products with high enantioselectivities. Fig. 2.3 Catalysts for the Mannich-type reactions of aldehydes and glyoxylate imines that use m-s/tu-gene rated enamine intermediates and that selectively afford (a) syn-products or (b) ont/ -products with high enantioselectivities.
S)-proline-catalyzed reactions using unmodified aldehydes as nucleophiles retain the aldehyde group, and the aldehyde group of the products can be used for further transformations in the same reaction vessel. For example, one-pot Mannich-oxime formation [71b], Mannich-allylation [71c], and Mannich-cyanation [80] reactions have been demonstrated (Scheme 2.18). Mannich-type reaction products that possess an aldehyde functionality are easily epimerized during work-up and silica gel column purification. In the one-pot Mannich-cyanation reaction sequence, the cyanohydrin was obtained without epimerization at the a-position of the original aldehyde Mannich products. Thus, this one-pot sequence minimizes potential epimerization of the Mannich products. [Pg.44]

S)-Proline also catalyzed the Mannich-type reactions of unmodified aldehydes and N-PMP-protected imines to afford the corresponding enantiomerically enriched / -aminoaldehydes at 4 °C (Table 2.13) [71b]. The products were isolated after reduction with NaBH4, though oxidation to the / -amino acid is also possible. These reactions also provided the syn-isomer as the major diastereomer with high enantioselectivities, and proceeded well in other solvents (e.g., dioxane, THF, Et20). In the reaction of propionaldehyde and the N-PMP-imine of 4-nitrobenzaldehyde in DMF, the addition of water (up to 20%, v/v) did not affect the enantioselectivity. Similar results were obtained for the (S)-proline-catalyzed Mannich-type reactions with the glyoxylate imine where water did not reduce enantioselectivity [71b]. However, the enantioselectivity of the reaction of propionaldehyde and the N-PMP-imine of benzaldehyde in DMF was decreased by the addition of water or MeOH [71b]. [Pg.45]


See other pages where Aldehyde Mannich-type reactions is mentioned: [Pg.15]    [Pg.15]    [Pg.46]    [Pg.273]    [Pg.348]    [Pg.349]    [Pg.350]    [Pg.351]    [Pg.416]    [Pg.432]    [Pg.69]    [Pg.70]    [Pg.94]    [Pg.101]    [Pg.9]    [Pg.103]    [Pg.17]    [Pg.359]    [Pg.370]    [Pg.50]   
See also in sourсe #XX -- [ Pg.38 , Pg.45 ]




SEARCH



Aldehydes Mannich reaction

Mannich-type reactions

© 2024 chempedia.info