Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes Mannich reactions

A major advancement for the subfield of enamine catalysis was achieved with the identification of aldehydes as useful donors for similar Mannich reactions.In particular, the addition of mono- or disubstituted aldehydes to ketoi-mines or aldimines, respectively, represents an elegant and highly efficient approach to the enantioselective construction of quaternary a-amino acids (Scheme 11A one-pot, three-component variant of the aldehyde Mannich reaction has also been recently disclosed (Scheme i 296-300... [Pg.328]

There also exists an acidregioselective condensation of the aldol type, namely the Mannich reaction (B. Reichert, 1959 H. Hellmann, 1960 see also p. 291f.). The condensation of secondary amines with aldehydes yields Immonium salts, which react with ketones to give 3-amino ketones (=Mannich bases). Ketones with two enolizable CHj-groupings may form 1,5-diamino-3-pentanones, but monosubstitution products can always be obtained in high yield. Unsymmetrical ketones react preferentially at the most highly substituted carbon atom. Sterical hindrance can reverse this regioselectivity. Thermal elimination of amines leads to the a,)3-unsaturated ketone. Another efficient pathway to vinyl ketones starts with the addition of terminal alkynes to immonium salts. On mercury(ll) catalyzed hydration the product is converted to the Mannich base (H. Smith, 1964). [Pg.57]

Pyrazolones show a great variety of reactions with carbonyl compounds (B-76MI40402). For instance, antipyrine is 4-hydroxymethylated by formaldehyde and it also undergoes the Mannich reaction. Tautomerizable 2-pyrazolin-5-ones react with aldehydes to yield compound (324) and with acetone to form 4-isopropylidene derivatives or dimers (Scheme 8 Section 4.02.1.4.10). [Pg.242]

The second line of circumstantial evidence quoted in support of this hypothesis is the ready formation of l,2,3,4-tetrahydro-/3-carboline derivatives under pseudo-physiological conditions of temperature, pH, and concentration. Tryptamine and aldehydes, trypt-amine and a-keto acids, and tryptophan and aldehydes condense at room temperature in a Pictet-Spengler type intramolecular Mannich reaction in the pH range 5.2-8.0 (cf. Section III, A, 1, a). It was argued that experiments of this type serve as models for biochemical reactions and may be used in evidence. [Pg.197]

An a-amino acid 3 can be prepared by treating aldehyde 1 with ammonia and hydrogen cyanide and a subsequent hydrolysis of the intermediate a-amino nitrile 2. This so-called Strecker synthesis - is a special case of the Mannich reaction-, it has found application for the synthesis of a-amino acids on an industrial scale. The reaction also works with ketones to yield a, a -disubstituted a-amino acids. [Pg.270]

Alternatively a Mannich-like pathway may be followed (see Mannich reaction), where ammonia reacts with the aldehyde 1 to give an intermediate iminium species, that adds hydrogen cyanide to give the a-amino nitrile 2. The actual mechanistic pathway followed depends on substrate structure and reaction conditions. [Pg.271]

Phenols, secondary and tertiary aromatic amines, pyrroles, and indoles can be aminomethylated by treatment with formaldehyde and a secondary amine. Other aldehydes have sometimes been employed. Aminoalkylation is a special case of the Mannich reaction (16-15). When phenols and other activated aromatic compounds are treated withA-hydroxymethylchloroacetamide, amidomethylation takes place " ... [Pg.722]

A particularly useful variation of this reaction uses cyanide rather than HCN. a-Amino nitriles can be prepared in one step by the treatment of an aldehyde or ketone with NaCN and NH4CI. This is called the Strecker synthesisand it is a special case of the Mannich reaction (16-15). Since the CN is easily hydrolyzed to the acid, this is a convenient method for the preparation of a-amino acids. The reaction has also been carried out with NH3-I-HCN and with NH4CN. Salts of primary and secondary amines can be used instead of NH to obtain N-substituted and N,N-disubstituted a-amino nitriles. Unlike 16-51, the Strecker synthesis is useful for aromatic as well as aliphatic ketones. As in 16-51, the Me3SiCN method has been used 64 is converted to the product with ammonia or an amine. ... [Pg.1240]

This is not the only route to compounds such as (38). The Mannich reaction (p T 158) provides aldehydes and ketones (39) which can be reduced to (38) and its analogues or can be alkylated by the chloro-... [Pg.62]

As already discussed for aldol and Robinson annulation reactions, proline is also a catalyst for enantioselective Mannich reactions. Proline effectively catalyzes the reactions of aldehydes such as 3-methylbutanal and hexanal with /V-arylimines of ethyl glyoxalate.196 These reactions show 2,3-syn selectivity, although the products with small alkyl groups tend to isomerize to the anti isomer. [Pg.143]

Figure 4.22 The Mannich reaction occurs between an active-hydrogen-containing compound (phenol) and an amine-containing molecule in the presence of an aldehyde (formaldehyde). The condensation reaction forms stable crosslinks. Figure 4.22 The Mannich reaction occurs between an active-hydrogen-containing compound (phenol) and an amine-containing molecule in the presence of an aldehyde (formaldehyde). The condensation reaction forms stable crosslinks.
In its simplest form, the Mannich reaction consists of the condensation of formaldehyde (or sometimes another aldehyde) with ammonia, in the form of its salt, and another compound containing an active hydrogen. Instead of using ammonia, however, this reaction can be done with primary or secondary amines, or even with amides. An example is illustrated in the condensation of acetophenone, formaldehyde, and a secondary amine salt (the active hydrogens are shown underlined) ... [Pg.777]

The group of Leadbeater reported a different type of Mannich reaction, which involved condensation of an aldehyde (1.5 equivalents) with a secondary amine and a terminal alkyne, in the presence of copper(I) chloride (10 mol%) to activate the... [Pg.182]

Related to the Mannich three-component reaction is the Petasis or boronic-Mannich reaction, which involves the reaction between an aldehyde, an amine, and a boronic acid. [Pg.183]

Multicomponent reaction systems are highly valued in solid-phase organic synthesis because several elements of diversity can be introduced in a single transformation.1 The Mannich reaction is a classic example of a three-component system in which an active hydrogen component, such as a terminal alkyne, undergoes condensation with the putative imine species formed from the condensation of an amine with an aldehyde.2 The resultant Mannich adducts contain at least three potential sites for diversification specifically, each individual component—the amine, aldehyde, and alkyne—can be varied in structure and thus provide an element of diversity. [Pg.50]

We describe here Mannich reactions of a resin-immobilized alkyne and demonstrate the versatility of this methodology.3 Aryl-, alkyl-, aralkyl-aldehydes, and formaldehyde are suitable... [Pg.50]

The Mannich reaction of secondary amines R NH (dibenzylamine, piperidine, morpholine, etc.), aldehydes R2CHO (R2 = alkyl, Ph or 2-furyl) and thiols R3SH (R3 = alkyl, Ph or benzyl) results in a-amino sulphides, which react with Grignard compounds to give tertiary amines in good yields (equation 47)136. [Pg.560]

This MCR chemistry began in 1850 when the Strecker reaction S-3CR of ammonia, aldehydes, and hydrogen cyanide was introduced. Since 1912 the Mannich reaction M-3CR of secondary amines, formaldehyde, and (3-protonated ketones is used. [Pg.4]

The Mannich reaction is a three component reaction in which an imine, that was formed from the condensation of an amine with an aldehyde, reacts with a component containing at least one hydrogen atom of pronounced reactivity. It is possible to immobilize every Mannich partner on sohd supports. In combinatorial chemistry the Mannich reaction has been used for the generation of different h-braries (Scheme 3.26). [Pg.173]

IrCl2H(cod)]2 catalyzed the synthesis of substituted quinolines, where the reachon of aniline derivahves, aromatic and alkyl aldehydes efficiently proceeds under an oxygen atmosphere (Scheme 11.34) [46]. The plausible mechanism consists of a Mannich reaction, a Friedel-Craft-type aromahc substituhon, dehydration, and dehydrogenation. This can be recognized as a formal [4+2] cycloaddition of N-aryl imine and enol (Scheme 11.35). [Pg.292]

The Mannich reaction is an excellent route to polynitroaliphatic amines and their derivatives. /3-Nitroalkylamines are formed from the reaction of an amine and aldehyde in the presence of a nitroalkane (Equations 1.4 and A large number of these reactions... [Pg.43]

Primary and secondary nitroalkanes, dinitromethane, and terminal em-dinitroaliphatic compounds like 1,1-dinitroethane, all contain acidic protons and have been used to generate Mannich products. Formaldehyde is commonly used in these reactions although the use of other aliphatic aldehydes has been reported. The nitroalkane component is frequently generated in situ from its methylol derivative, a reaction which also generates formaldehyde. Ammonia, " aliphatic amines, " hydrazine, and even urea have been used as the amine component of Mannich reactions. [Pg.43]

The Mannich reaction is best discussed via an example. A mixture of dimethylamine, formaldehyde and acetone under mild acidic conditions gives N,N-dimethyl-4-aminobutan-2-one. This is a two-stage process, beginning with the formation of an iminium cation from the amine and the more reactive of the two carbonyl compounds, in this case the aldehyde. This iminium cation then acts as the electrophile for addition of the nucleophile acetone. Now it would be nice if we could use the enolate anion as the nucleophile, as in the other reactions we have looked at, but under the mild acidic conditions we cannot have an anion, and the nucleophile must be portrayed as the enol tautomer of acetone. The addition is then unspectacular, and, after loss of a proton from the carbonyl, we are left with the product. [Pg.369]

This is a fairly general reaction, and requires an amine plus an aldehyde (usually, but not necessarily, formaldehyde) together with an enolizable ketone, which together generate a P-aminoketone via an iminium system. The Mannich reaction is surprisingly... [Pg.370]

We have an aldehyde, an amine, and a ketone. As in part (b), the amine reacts first to give an imine, and this behaves as a carbonyl analogue, which in the Mannich reaction is then the electrophile for an enolate anion equivalent. How can we remember the sequence of events The most common mistake is to react the aldehyde and ketone via an aldol reaction, but this then leads to an alcohol and one is faced with a substitution reaction to incorporate the amine. It is the mild acidic conditions that help us to avoid wrong... [Pg.661]


See other pages where Aldehydes Mannich reactions is mentioned: [Pg.46]    [Pg.292]    [Pg.94]    [Pg.7]    [Pg.167]    [Pg.40]    [Pg.823]    [Pg.84]    [Pg.340]    [Pg.1189]    [Pg.202]    [Pg.264]    [Pg.554]    [Pg.371]    [Pg.328]   
See also in sourсe #XX -- [ Pg.201 ]

See also in sourсe #XX -- [ Pg.954 ]

See also in sourсe #XX -- [ Pg.954 ]

See also in sourсe #XX -- [ Pg.954 ]




SEARCH



Aldehyde Mannich-type reactions

Aldehydes Mannich reactions with

Aldehydes in the Mannich reaction

Aldehydes reaction with Mannich bases

Aldehydes, p-amino Mannich reaction

Mannich reactions of aldehydes

Three-Component Mannich Reactions using Aldehyde Donors

© 2024 chempedia.info