Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcoholysis of anhydrides

Alcoholysis of trihalides 0-6 Hydrolysis of ortho esters 0-20 Alcoholysis of acyl halides 0-21 Alcoholysis of anhydrides 0-22 Esterification of carboxylic acids 0-23 Transesterification 0-24 Alkylation of carboxylic acid salts 0-25 Cleavage of ethers with anhydrides 0-26 Alkylation of carboxylic acids with diazo compounds... [Pg.1281]

The alcoholysis of anhydrides (Reaction XVI) is similar in scope to the reaction of alcohols with acyl halides. The reaction is catalyzed by general esterification catalysts, but usually they are not needed unless the anhydride is unreactive or the di-ester (such as a phthalate) is the product sought. [Pg.15]

While the alcoholysis of anhydrides outlined above presumably proceeds via non-covalent catalysis, a range of chiral Lewis bases have been used for the desymmetrization of alcohol substrates using covalent strategies. As representative examples of this process, Birman utilized the isothiourea BTM 149 in an asymmetric synthesis of (—)-lobeline via desymmetrization of lobelanidine 167... [Pg.2928]

Table 7.4 Enantioselective alcoholysis of anhydrides catalyzed by p-amino alcohols 80a-c O... Table 7.4 Enantioselective alcoholysis of anhydrides catalyzed by p-amino alcohols 80a-c O...
Some references cover direct preparation of the different crystal modifications of phthalocyanines in pigment form from both the nitrile—urea and phthahc anhydride—urea process (79—85). Metal-free phthalocyanine can be manufactured by reaction of o-phthalodinitrile with sodium amylate and alcoholysis of the resulting disodium phthalocyanine (1). The phthahc anhydride—urea process can also be used (86,87). Other sodium compounds or an electrochemical process have been described (88). Production of the different crystal modifications has also been discussed (88—93). [Pg.505]

The acid chlorides are generally more reactive than the corresponding acid anhydrides. In fact, the alcoholysis of acid chlorides is probably the best laboratory method for preparing esters. Frequentiy, basic materials are added during the course of the reaction to neutralize by-product hydrochloric acid. When the basic material is aqueous caustic, the procedure is referred to as the Schotten-Baumann procedure (73). Esterification of tertiary alcohols by acid chlorides is described in Reference 74. Esters of tertiary alcohols can also be formed through an intermediate /-butyl thioate group (75) ... [Pg.380]

Polyesters have been obtained in organic medium by polyesterification of hydroxy acids,328,329 hydroxy esters,330 stoichiometric mixtures of diols and diacids,331-333 diols and diesters,334-339 and diols and cyclic anhydrides.340 Lipases have also been reported to catalyze ester-ester interchanges in solution or in die bulk at moderate temperature.341 Since lipases obviously catalyze the reverse reaction (i.e., hydrolysis or alcoholysis of polyester), lipase-catalyzed polyesterifications can be regarded as equilibrium polycondensations taking place in mild conditions (Scheme 2.35). [Pg.83]

Enantioselective alcoholysis of racemic, prochiral, or meso cyclic anhydrides can be catalyzed by hydrolases, yielding the corresponding monoesters (Eigure 6.25). In most cases, the enantioselectivity was moderate ]75-77]. Organometallic catalysts or organocatalysts such as cinchona alkaloids are often more efficient than enzymes for the stereoselective ring opening of cyclic anhydrides. [Pg.143]

The influence of temperature on the ortho effect has been evaluated in the alkaline hydrolysis in aqueous DMSO solutions of ortho-, meta- and para-substituted phenyl benzoates (26). The alcoholysis of phthalic anhydride (27) to monoalkyl phthalates (28) occurs through an A-2 mechanism via rate-determining attack of the alcohol on a carbonyl carbon of the anhydride (Scheme 4). Evidence adduced for this proposal included highly negative A 5 values and a p value of 4-2.1. In the same study, titanium tetra-n-butoxide and tri-n-butyltin ethanoxide were shown to act as effective catalysts of the half-ester formation from (27), the mechanism involving alkoxy ligand exchange at the metal as an initial step. ... [Pg.41]

Alcoholysis of meso-cycYic anhydrides offers a versatile route to succinate and glu-tarate half-esters. Although a number of stoichiometric approaches to this problem have been investigated, a successful catalytic version of this reaction appeared as recently as 2003. ° Bolm and coworkers have developed a protocol for the metha-nolysis of a variety of succinic anhydrides using cinchona alkaloids [Eq. (10.50)]. The reaction may be made catalytic in alkaloid when pentamethylpiperidine is used as a stoichiometric additive. A moderate decrease in enantioselectivity is observed in a number of cases, although excellent selectivities are still attainable. More problematic is the reaction time (6 days under catalytic conditions) ... [Pg.300]

Mannitol hexanitrate is obtained by nitration of mannitol with mixed nitric and sulfuric acids. Similarly, nitration of sorbitol using mixed acid produces the hexanitrate when the reaction is conducted at 0—3°C and at —10 to —75°C, the main product is sorbitol pentanitrate (117). Xylitol, ribitol, and L-arabinitol are converted to the pentanitrates by fuming nitric acid and acetic anhydride (118). Phosphate esters of sugar alcohols are obtained by the action of phosphorus oxychloride (119) and by alcoholysis of organic phosphates (120). The 1,6-dibenzene sulfonate of D-mannitol is obtained by the action of benzene sulfonyl chloride in pyridine at 0°C (121). To obtain 1,6-dimethanesulfonyl-D-mannitol free from anhydrides and other by-products, after similar sulfonation with methane sulfonyl chloride and pyridine the remaining hydroxyl groups are acetylated with acetic anhydride and the insoluble acetyl derivative is separated, followed by deacetylation with hydrogen chloride in methanol (122). Alkyl sulfate esters of polyhydric alcohols result from the action of sulfur trioxide—trialkyl phosphates as in the reaction of sorbitol at 34—40°C with sulfur trioxide—triethyl phosphate to form sorbitol hexa(ethylsulfate) (123). [Pg.51]

Kinetic resolution of chiral, racemic anhydrides In this process the racemic mixture of a chiral anhydride is exposed to the alcohol nucleophile in the presence of a chiral catalyst such as A (Scheme 13.2, middle). Under these conditions, one substrate enantiomer is converted to a mono-ester whereas the other remains unchanged. Application of catalyst B (usually the enantiomer or a pseudo-enantiomer of A) results in transformation/non-transformation of the enantiomeric starting anhydride ). As usual for kinetic resolution, substrate conversion/product yield(s) are intrinsically limited to a maximum of 50%. For normal anhydrides (X = CR2), both carbonyl groups can engage in ester formation, and the product formulas in Scheme 13.1 are drawn arbitrarily. This section also covers the catalytic asymmetric alcoholysis of a-hydroxy acid O-carboxy anhydrides (X = O) and of a-amino acid N-carboxy anhydrides (X = NR). In these reactions the electrophilicity of the carbonyl groups flanking X is reduced and regioselective attack of the alcohol nucleophile on the other carbonyl function results. [Pg.347]

In 2000, Deng reported that commercially available Sharpless ligands also catalyze the highly enantioselective alcoholysis of meso-cyclic anhydrides [179]. [Pg.315]

The arsonons esters are easily synthesized by the reaction of the dihaloarsines with alcohols or alkoxides. With alcohols, CaCl2 mnst be present because the esters are very sensitive toward hydrolysis, which leads to the reformation of the anhydride (equation 129). The reaction of an alcohol with a bisaminoarsine leads to an arsonous ester (equation 130), as does the alcoholysis of the anhydride. Reaction of diols with bis(drmethylamino)alkylarsines leads to esters of macrocycUc arsinous acid. ... [Pg.265]

Chen Y, McDaid P, Deng L. Asymmetric alcoholysis of cyclic anhydrides. Chem. Rev. 2003 103 2965-2983. [Pg.2132]

Polymers with pendant groups that are derivatives of carboxylic acid can he hydrolyzed to yield poly(acrylic acid). This includes polymers like polyacrylamide, polyacrylonitrile, and polyacrylates. When heated, poly(acrylic acid) form polymeric anhydrides, which undergo typical reactions of anhydrides, such as hydrolysis, alcoholysis, and amidation. [Pg.610]

Alcoholysis of amides is possible, although it is usually difficult. It has been most common with the imidazolide type of amides (e.g., 100). For other amides, an activating agent is usually necessary before the alcohol will replace the NR2 unit. Dimethylformamide, however, reacted with primary alcohols in the presence of 2,4,6-trichloro-l,3,5-pyrazine (cyanuric acid) to give the corresponding formate ester. Treatment of an amide with triflic anhydride (CF3SO2OSO2CF3) in the... [Pg.1421]

Nucleophilic attack by a primary alcohol on the gamma phosphate of ATP (alcoholysis of an acid anhydride). This is a very favourable reaction. [Pg.279]


See other pages where Alcoholysis of anhydrides is mentioned: [Pg.483]    [Pg.1662]    [Pg.392]    [Pg.1412]    [Pg.207]    [Pg.223]    [Pg.483]    [Pg.1662]    [Pg.392]    [Pg.1412]    [Pg.207]    [Pg.223]    [Pg.51]    [Pg.128]    [Pg.150]    [Pg.488]    [Pg.1681]    [Pg.267]    [Pg.1476]    [Pg.78]    [Pg.1293]    [Pg.418]    [Pg.389]    [Pg.55]    [Pg.179]    [Pg.1413]    [Pg.66]    [Pg.328]    [Pg.500]   
See also in sourсe #XX -- [ Pg.483 ]

See also in sourсe #XX -- [ Pg.392 ]

See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Anhydrides alcoholysis

© 2024 chempedia.info