Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols from nucleophilic addition

Photodriven reactions of Fischer carbenes with alcohols produces esters, the expected product from nucleophilic addition to ketenes. Hydroxycarbene complexes, generated in situ by protonation of the corresponding ate complex, produced a-hydroxyesters in modest yield (Table 15) [103]. Ketals,presumably formed by thermal decomposition of the carbenes, were major by-products. The discovery that amides were readily converted to aminocarbene complexes [104] resulted in an efficient approach to a-amino acids by photodriven reaction of these aminocarbenes with alcohols (Table 16) [105,106]. a-Alkylation of the (methyl)(dibenzylamino)carbene complex followed by photolysis produced a range of racemic alanine derivatives (Eq. 26). With chiral oxazolidine carbene complexes optically active amino acid derivatives were available (Eq. 27). Since both enantiomers of the optically active chromium aminocarbene are equally available, both the natural S and unnatural R amino acid derivatives are equally... [Pg.182]

The reaction of primary amines with aldehydes and ketones do not give the products expected from nucleophilic addition alone. This is because of the further reaction taking place once nucleophilic addition occurs, e.g. consider the reaction of acetaldehyde (ethanal) with a primary amine methylamine (Following fig.). The product contains the methylamine skeleton, but there is no alcohol group and there is a double bond between the carbon and the nitrogen. This product is known as imine or a Scbiffbase. [Pg.228]

The ability of the binuclear complex [Cp RuCl(p2-SR)2RuCl(Cp )] to generate cationic allenylidene complexes by activation of terminal prop-2-ynols in the presence of NH4BF4 as a chloride abstractor opens the way to a variety of catalytic transformations of propargylic alcohols involving nucleophilic addition at the Cy atom of the ruthenium allenylidene intermediate (Scheme 19). This leads to the formation of a functional ruthenium vinylidene species which tau-tomerizes into an -coordinated alkyne that is removed from the ruthenium centre in the presence of the substrate. [Pg.145]

Rapopoit found that 5-(2-pyridyl) thioates such as (28) did not function as selective acylating agents, and substantial amounts of tertiary alcohol were formed through overaddition (equation 16). Presumably, the tetrahedral intermediate, derived from nucleophilic addition to the S-(2-pyridyl) thioate, was not a stable entity in the reaction mixture. As will be discussed shortly, the lability of these intermediates had been recognized previously. The novel dimethylpyrazolide moiety of substrate (29) also did not confer any additional stability to the tetrahedral intermediate and tertiary alcohol was the major product (equation 16). Tertiary amides, such as those derived from pyrrolidine or dimethylamine, were reactive towards lithium adkynides in the presence of BF3, but analysis of the product indicated that it had undergone substantial racemization. ... [Pg.406]

Stabilities of o -adducts derived from nucleophilic addition of alcohols and alkox-ide ions to azaaromatic compounds are varied to a great extent. A whole number of alkoxy adducts of 1,4-diazinium and 1,2,4-triazinium cations have been registered by NMR [114] however, attempts to isolate them failed. Contrary to that, treatment of 3-aryl-l,2,4-triazin-5-ones with primary or secondary alcohols in the presence of acetic anhydride results in the formation of rather stable 6-aIkoxy-l-acetyl-l,6-dihydro-l,2,4-triazin-5-ones (Scheme 38) [117, 140, 141],... [Pg.25]

Because of thetr electron deficient nature, fluoroolefms are often nucleophihcally attacked by alcohols and alkoxides Ethers are commonly produced by these addition and addition-elimination reactions The wide availability of alcohols and fliioroolefins has established the generality of the nucleophilic addition reactions The mechanism of the addition reaction is generally believed to proceed by attack at a vinylic carbon to produce an intermediate fluorocarbanion as the rate-determining slow step The intermediate carbanion may react with a proton source to yield the saturated addition product Alternatively, the intermediate carbanion may, by elimination of P-halogen, lead to an unsaturated ether, often an enol or vinylic ether These addition and addition-elimination reactions have been previously reviewed [1, 2] The intermediate carbanions resulting from nucleophilic attack on fluoroolefins have also been trapped in situ with carbon dioxide, carbonates, and esters of fluorinated acids [3, 4, 5] (equations 1 and 2)... [Pg.729]

Substitution of an additional nitrogen atom onto the three-carbon side chain also serves to suppress tranquilizing activity at the expense of antispasmodic activity. Reaction of phenothia zine with epichlorohydrin by means of sodium hydride gives the epoxide 121. It should be noted that, even if initial attack in this reaction is on the epoxide, the alkoxide ion that would result from this nucleophilic addition can readily displace the adjacent chlorine to give the observed product. Opening of the oxirane with dimethylamine proceeds at the terminal position to afford the amino alcohol, 122. The amino alcohol is then converted to the halide (123). A displacement reaction with dimethylamine gives aminopromazine (124). ... [Pg.390]

Each of the following substances can be prepared by a nucleophilic addition reaction between an aldehyde or ketone and a nucleophile. Identify the reactants from which each was prepared. If the substance is an acetal, identify the carbonyl compound and the alcohol if it is an imine, identify the carbonyl compound and the amine and so forth. [Pg.739]

Aldol reactions, Like all carbonyl condensations, occur by nucleophilic addition of the enolate ion of the donor molecule to the carbonyl group of the acceptor molecule. The resultant tetrahedral intermediate is then protonated to give an alcohol product (Figure 23.2). The reverse process occurs in exactty the opposite manner base abstracts the -OH hydrogen from the aldol to yield a /3-keto alkoxide ion, which cleaves to give one molecule of enolate ion and one molecule of neutral carbonyl compound. [Pg.879]

Step 2 of Figure 29.12 Isomerization Citrate, a prochiral tertiary alcohol, is next converted into its isomer, (2, 35)-isocitrate, a chiral secondary alcohol. The isomerization occurs in two steps, both of which are catalyzed by the same aconitase enzyme. The initial step is an ElcB dehydration of a /3-hydroxy acid to give cfs-aconitate, the same sort of reaction that occurs in step 9 of glycolysis (Figure 29.7). The second step is a conjugate nucleophilic addition of water to the C=C bond (Section 19.13). The dehydration of citrate takes place specifically on the pro-R arm—the one derived from oxaloacetate—rather than on the pro-S arm derived from acetyl CoA. [Pg.1156]

The conversion of a thiolactone to a cyclic ether can also be used as a key step in the synthesis of functionalized, stereochemically complex oxacycles (see 64—>66, Scheme 13). Nucleophilic addition of the indicated higher order cuprate reagent to the C-S double bond in thiolactone 64 furnishes a tetrahedral thiolate ion which undergoes smooth conversion to didehydrooxepane 65 upon treatment with 1,4-diiodobutane and the non-nucleophilic base 1,2,2,6,6-pentamethylpiperidine (pempidine).27 Regio- and diastereoselective hydroboration of 65 then gives alcohol 66 in 89 % yield after oxidative workup. Versatile vinylstannanes can also be accessed from thiolactones.28 For example, treatment of bis(thiolactone) 67 with... [Pg.746]

The coupling of a secondary alcohol 1 with a primary alcohol 2 is achieved by the temporary removal of from each substrate which generates the ketone 3 and aldehyde 4 intermediates. A crossed aldol condensation occurs under the reaction conditions by the enolate derived from ketone 3 undergoing nucleophilic addition... [Pg.253]

Taking Tomioka s pioneering work [8] as a precedent, we have screened 13-amino alcohols as chiral modifiers [9] in the nucleophilic addition of lithium 2-pyridinylacetylide 6 to the pMB protected ketimine 5. We were pleased to discover that when 5 was treated with a mixture prepared from 1.07 equiv each of quinine and 2-ethynylpyridine by addition of 2.13 equiv of n-BuLi in THF at -40 to -20 °C, the desired adduct 19 was obtained in 84% yield with maximum 64% ee. Soon after, we found selection of the nitrogen protective group had great influence on the outcome of the asymmetric addition and the ANM (9-anthranylmethyl)... [Pg.7]

Kostic et al. recently reported the use of various palladium(II) aqua complexes as catalysts for the hydration of nitriles.456 crossrefil. 34 Reactivity of coordination These complexes, some of which are shown in Figure 36, also catalyze hydrolytic cleavage of peptides, decomposition of urea to carbon dioxide and ammonia, and alcoholysis of urea to ammonia and various carbamate esters.420-424, 427,429,456,457 Qggj-jy palladium(II) aqua complexes are versatile catalysts for hydrolytic reactions. Their catalytic properties arise from the presence of labile water or other solvent ligands which can be displaced by a substrate. In many cases the coordinated substrate becomes activated toward nucleophilic additions of water/hydroxide or alcohols. New palladium(II) complexes cis-[Pd(dtod)Cl2] and c - Pd(dtod)(sol)2]2+ contain the bidentate ligand 3,6-dithiaoctane-l,8-diol (dtod) and unidentate ligands, chloride anions, or the solvent (sol) molecules. The latter complex is an efficient catalyst for the hydration and methanolysis of nitriles, reactions shown in Equation (3) 435... [Pg.595]

Nitration of furfuryl alcohol (2-furylmethanol) in acetic anhydride yields the nitro-nitrate 57 which possesses both a reactive methylene group able to undergo aldol reactions, etc., and also a nitrate ion leaving group for nucleophilic substitutions.137 Detailed studies of the nitration disclose various products resulting from the addition of one or even two acetic acid residues to the furan nucleus in competition with the nitrations.138,139... [Pg.193]

The carbon-metal cr-bond emanating from the addition of an alcohol nucleophile to a 7t-alkene complex may undergo a protonolytic cleavage to effect overall hydroalkoxylation of the alkene. While this process is difficult to achieve due to the propensity of the cr-metal species to undergo f3-H elimination, some encouraging progress in this area has recently been forthcoming. [Pg.683]

The study above (Hanna et al., 1992) also addressed the problem of nucleophilic addition of alcohols to DMPO, using Fe111 as the oxidant in an aqueous-alcoholic solution (from 95% to 25% water). Only primary alcohols engaged in this reaction, whereas 2-propanol or 2-methyl-2-propanol did not react even when the alcohol concentration was increased to 70%. This may depend on either decreased reactivity of secondary and tertiary alcohols, perhaps for steric reasons, or lower stability of the corresponding spin adducts. [Pg.135]


See other pages where Alcohols from nucleophilic addition is mentioned: [Pg.442]    [Pg.4037]    [Pg.406]    [Pg.101]    [Pg.325]    [Pg.811]    [Pg.94]    [Pg.269]    [Pg.329]    [Pg.811]    [Pg.63]    [Pg.710]    [Pg.229]    [Pg.5]    [Pg.12]    [Pg.14]    [Pg.16]    [Pg.101]    [Pg.63]    [Pg.69]    [Pg.71]    [Pg.87]    [Pg.103]    [Pg.366]    [Pg.61]    [Pg.94]    [Pg.243]    [Pg.44]    [Pg.393]    [Pg.408]    [Pg.68]   


SEARCH



Addition alcohols

Alcohol additive

Alcohols nucleophiles

Alcohols nucleophilicity

Alcohols, from addition

Nucleophile alcohols

Nucleophilic addition alcohols

Nucleophilic addition reactions tertiary alcohol formed from

Nucleophilic alcohols

© 2024 chempedia.info