Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic addition alcohol

Many of the most interesting and useful reactions of aldehydes and ketones involve trans formation of the initial product of nucleophilic addition to some other substance under the reaction conditions An example is the reaction of aldehydes with alcohols under con ditions of acid catalysis The expected product of nucleophilic addition of the alcohol to the carbonyl group is called a hemiacetal The product actually isolated however cor responds to reaction of one mole of the aldehyde with two moles of alcohol to give gem mal diethers known as acetals... [Pg.720]

Protonation of the carbonyl oxygen activates the carbonyl group toward nucleophilic addition Addition of an alcohol gives a tetrahedral inter mediate (shown m the box m the preceding equation) which has the capacity to revert to starting materials or to undergo dehydration to yield an ester... [Pg.823]

The first stage of the mechanism is exactly the same as for nucleophilic addition to the carbonyl group of an aldehyde or ketone Many of the same nucleophiles that add to aldehydes and ketones—water (Section 17 6) alcohols (Section 17 8) amines (Sections 17 10-17 11)—add to the carbonyl groups of carboxylic acid derivatives... [Pg.837]

Aldoses incorporate two functional groups C=0 and OH which are capable of react mg with each other We saw m Section 17 8 that nucleophilic addition of an alcohol function to a carbonyl group gives a hemiacetal When the hydroxyl and carbonyl groups are part of the same molecule a cyclic hemiacetal results as illustrated m Figure 25 3 Cyclic hemiacetal formation is most common when the ring that results is five or SIX membered Five membered cyclic hemiacetals of carbohydrates are called furanose forms SIX membered ones are called pyranose forms The nng carbon that is derived... [Pg.1032]

Hemiacetal (Section 17 8) Product of nucleophilic addition of one molecule of an alcohol to an aldehyde or a ketone Hemiacetals are compounds of the type... [Pg.1285]

Nucleophilic Addition. Reagents with labile hydrogen atoms, such as alcohols, thiols, phenols, carboxyHc acids and amines, add to ketenes giving the corresponding carboxyHc acid derivatives (1) as shown ia Figure 1 (38). Not many are of practical importance, as there are better ways to such... [Pg.473]

Nucleophilic Addition Reactions. Many nucleophiles, including amines, mercaptans, and alcohols, undergo 1,4-conjugate addition to the double bond of methacrylates (12—14). [Pg.246]

Many other reactions of ethylene oxide are only of laboratory significance. These iaclude nucleophilic additions of amides, alkaU metal organic compounds, and pyridinyl alcohols (93), and electrophilic reactions with orthoformates, acetals, titanium tetrachloride, sulfenyl chlorides, halo-silanes, and dinitrogen tetroxide (94). [Pg.454]

Because of thetr electron deficient nature, fluoroolefms are often nucleophihcally attacked by alcohols and alkoxides Ethers are commonly produced by these addition and addition-elimination reactions The wide availability of alcohols and fliioroolefins has established the generality of the nucleophilic addition reactions The mechanism of the addition reaction is generally believed to proceed by attack at a vinylic carbon to produce an intermediate fluorocarbanion as the rate-determining slow step The intermediate carbanion may react with a proton source to yield the saturated addition product Alternatively, the intermediate carbanion may, by elimination of P-halogen, lead to an unsaturated ether, often an enol or vinylic ether These addition and addition-elimination reactions have been previously reviewed [1, 2] The intermediate carbanions resulting from nucleophilic attack on fluoroolefins have also been trapped in situ with carbon dioxide, carbonates, and esters of fluorinated acids [3, 4, 5] (equations 1 and 2)... [Pg.729]

As mentioned in the introduction, l-heterobut-l-en-3-ynes, RXCH=CHC=CH (X = RN, O, S R = organic radical), are the nearest and most important diacetylene derivatives readily formed by nucleophilic addition of amines, alcohols, and thiols to diacetylene. In many heterocyclization reactions (especially those leading to fundamental heterocycles) l-heterobut-l-en-3-ynes behave as diacetylene synthetic equivalents, but unlike diacetylene, they are nonhazardous. Therefore, the syntheses of heterocycles therefrom are often more attractive in preparative aspect. [Pg.183]

Substitution of an additional nitrogen atom onto the three-carbon side chain also serves to suppress tranquilizing activity at the expense of antispasmodic activity. Reaction of phenothia zine with epichlorohydrin by means of sodium hydride gives the epoxide 121. It should be noted that, even if initial attack in this reaction is on the epoxide, the alkoxide ion that would result from this nucleophilic addition can readily displace the adjacent chlorine to give the observed product. Opening of the oxirane with dimethylamine proceeds at the terminal position to afford the amino alcohol, 122. The amino alcohol is then converted to the halide (123). A displacement reaction with dimethylamine gives aminopromazine (124). ... [Pg.390]

Predict the product formed by nucleophilic addition of cyanide ion (CN ) to the carbonyl group of acetone, followed by protonalion to give an alcohol ... [Pg.694]

Aldehyde oxidations occur through intermediate l/l-diols, or hydrates, which are formed by a reversible nucleophilic addition of water to the carbonyl group. Even though formed to only a small extent at equilibrium, the hydrate reacts like any typical primary or secondary alcohol and is oxidized to a carbonyl compound (Section 17.7). [Pg.701]

Nucleophilic Addition of Grignard and Hydride Reagents Alcohol Formation... [Pg.708]

We saw in Section 17.5 that treatment of an aldehyde or ketone with a Grignard reagent, RMgX, yields an alcohol by nucleophilic addition of a carbon anion, or carbanion. A carbon-magnesium bond is strongly polarized, so a Grignard reagent reacts for all practical purposes as R - +MgX. [Pg.708]

Mechanism of the Grignard reaction. Nucleophilic addition of a carbanion to an aldehyde or ketone, followed by protonation of the alkoxide intermediate, yields an alcohol. [Pg.709]

Nucleophilic addition of an alcohol to the carbonyl group initially yields a hydroxy ether called a hemiacetal, analogous to the gem diol formed by addition of water. HcmiacetaJs are formed reversibly, with the equilibrium normally favoring the carbonyl compound. In the presence of acid, however, a further reaction occurs. Protonation of the -OH group, followed by an El-like loss of water, leads to an oxonium ion, R2C=OR+, which undergoes a second nucleophilic addition of alcohol to yield the acetal. The mechanism is shown in Figure 19.12. [Pg.717]

The Cannizzaro reaction takes place by nucleophilic addition of OH- to an aldehyde to give a tetrahedral intermediate, which expels hydride ion as a leaving group and is thereby oxidized. A second aldehyde molecule accepts the hydride ion in another nucleophilic addition step and is thereby reduced. Benzaldehyde, for instance, yields benzyl alcohol plus benzoic acid when heated with aqueous NaOH. [Pg.724]

Nucleophilic addition reactions of aldehydes and ketones (a) Addition of hydride alcohols (Section 19.7)... [Pg.737]

Each of the following substances can be prepared by a nucleophilic addition reaction between an aldehyde or ketone and a nucleophile. Identify the reactants from which each was prepared. If the substance is an acetal, identify the carbonyl compound and the alcohol if it is an imine, identify the carbonyl compound and the amine and so forth. [Pg.739]

We said in Section 17.4 that carboxylic acids are reduced by L1AIH4 to give primary alcohols, but we deferred a discussion of the reaction mechanism at that time. In fact, the reduction is a nucleophilic acyl substitution reaction in which —H replaces -OH to give an aldehyde, which is further reduced to a primary alcohol by nucleophilic addition. The aldehyde intermediate is much more reactive than the starting acid, so it reacts immediately and is not isolated. [Pg.799]

Acid-catalyzed ester hydrolysis can occur by more than one mechanism, depending on the structure of the ester. The usual pathway, however, is just the reverse of a Fischer esterification reaction (Section 21.3). The ester is first activated toward nucleophilic attack by protonation of the carboxyl oxygen atom, and nucleophilic addition of water then occurs. Transfer of a proton and elimination of alcohol yields the carboxylic acid (Figure 21.8). Because this hydrolysis reaction is the reverse of a Fischer esterification reaction, Figure 21.8 is the reverse of Figure 21.4. [Pg.809]

Aldol reactions, Like all carbonyl condensations, occur by nucleophilic addition of the enolate ion of the donor molecule to the carbonyl group of the acceptor molecule. The resultant tetrahedral intermediate is then protonated to give an alcohol product (Figure 23.2). The reverse process occurs in exactty the opposite manner base abstracts the -OH hydrogen from the aldol to yield a /3-keto alkoxide ion, which cleaves to give one molecule of enolate ion and one molecule of neutral carbonyl compound. [Pg.879]

Tire mechanism of the Claisen condensation is similar to that of the aldol condensation and involves the nucleophilic addition of an ester enolate ion to the carbonyl group of a second ester molecule. The only difference between the aldol condensation of an aldeiwde or ketone and the Claisen condensation of an ester involves the fate of the initially formed tetrahedral intermediate. The tetrahedral intermediate in the aldol reaction is protonated to give an alcohol product—exactly the behavior previously seen for aldehydes and ketones (Section 19.4). The tetrahedral intermediate in the Claisen reaction, however, expels an alkoxide leaving group to yield an acyl substitution product—exactly the behavior previously seen for esters (Section 21.6). The mechanism of the Claisen condensation reaction is shown in Figure 23.5. [Pg.888]

We said in Section 19.10 that aldehydes and ketones undergo a rapid and reversible nucleophilic addition reaction with alcohols to form hemiacetals. [Pg.984]


See other pages where Nucleophilic addition alcohol is mentioned: [Pg.1085]    [Pg.1085]    [Pg.811]    [Pg.94]    [Pg.469]    [Pg.269]    [Pg.258]    [Pg.150]    [Pg.400]    [Pg.811]    [Pg.63]    [Pg.709]    [Pg.709]    [Pg.710]    [Pg.717]    [Pg.717]    [Pg.719]    [Pg.736]   
See also in sourсe #XX -- [ Pg.209 ]

See also in sourсe #XX -- [ Pg.209 ]

See also in sourсe #XX -- [ Pg.209 ]

See also in sourсe #XX -- [ Pg.209 ]

See also in sourсe #XX -- [ Pg.4 , Pg.10 ]




SEARCH



2,3-epoxy alcohols amine nucleophiles, addition

2,3-epoxy alcohols carbon nucleophile addition

2-Amino alcohols by nucleophilic addition

Addition alcohols

Alcohol additive

Alcohol carbonyl nucleophilic addition reactions

Alcohols from nucleophilic addition

Alcohols nucleophiles

Alcohols nucleophilicity

Alcohols with Additional Nucleophilic Groups

Heteroatomic nucleophiles amine/alcohol addition

Nucleophile alcohols

Nucleophilic Addition of Alcohols Acetal Formation

Nucleophilic Addition of Grignard and Hydride Reagents Alcohol Formation

Nucleophilic addition 2-amino alcohol

Nucleophilic addition reactions tertiary alcohol formed from

Nucleophilic alcohols

Nucleophilic substitution amine/alcohol addition

Tertiary alcohols, nucleophilic additions

© 2024 chempedia.info