Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Combination tables alcohols

Propylene oxide [75-56-9] is manufactured by either the chlorohydrin process or the peroxidation (coproduct) process. In the chlorohydrin process, chlorine, propylene, and water are combined to make propylene chlorohydrin, which then reacts with inorganic base to yield the oxide. The peroxidation process converts either isobutane or ethylbenzene direcdy to an alkyl hydroperoxide which then reacts with propylene to make propylene oxide, and /-butyl alcohol or methylbenzyl alcohol, respectively. Table 1 Hsts producers of propylene glycols in the United States. [Pg.365]

More than 66 percent of PCP-related deaths reported to DAWN in 1983 involved at least one other drug. Table 5 shows a statistically significant relationship for alcohol combined with PCP and heroin combined with PCP (alcohol Xz=12.41, df=l, p <. 001 heroin X2 =29.13, df=l, p <. 001). [Pg.183]

FIGURE 2.16. Benzyl alcohol. O—H stretch intermolecular hydrogen bonded, 3329 cm . C—H stretch aromatic 3100-3000 cm. C—H stretch methylene, 2940-2860 cm Overtone or combination bands, 2000-1667 cm1. C=C ring stretch, 1501,1455 cm-1, overlapped by CH2 scissoring, about 1471 cm-. O—H bend, possibly augmented by C—H in-plane bend, 1209 cm. C—O stretch, primary alcohol (see Table 2.5) 1023 cm. Out-of-plane aromatic C—H bend,745 cm-1. Ring C=C bend,707 cm-1. [Pg.89]

For soap/alcohol combinations — g will depend not only on the soap counter ion but also on the alcohol/soap ratio. Furthermore, when a certain alcohol/soap ratio is exceeded (=2 for the potassium oleate system) S becomes Independent of the water content of the lamellar phase. This condition applies for Inverse structures and the water/pentanol/potassium oleate inverse micellar system will be examined for the structure determining ratio in Table I. [Pg.13]

Researchers systematically examined values of the distribution coefficient for various resins and solutions across the entire periodic table. These distribution coefficients are available in tables or graphs of the distribution coefficient acid concentration. One well-known example, in Fig. 3.1, shows In Dy v.y. concentration of HCl (Kraus and Nelson 1956). Similar figures are available for HBr, HNO3, HCIO4, and H2SO4, as well as selected acid/alcohol combinations (Korkisch 1989). [Pg.48]

To the synthetic chemist the most important of the reactions m Table 17 1 are the last two the oxidation of primary alcohols to aldehydes and secondary alcohols to ketones Indeed when combined with reactions that yield alcohols the oxidation methods are so versatile that it will not be necessary to introduce any new methods for preparing aide hydes and ketones in this chapter A few examples will illustrate this point... [Pg.709]

Other Substances. Driving under the influence of alcohol cases are compHcated because people sometimes consume alcohol with other substances (11—13). The most common iUicit substances taken with alcohol are marijuana and cocaine (see Table 1) (14). In combination with alcohol, some dmgs have an additive effect. When a blood or urine alcohol sample is tested for alcohol and the result is well below the legal concentration threshold yet the test results are not consistent with the arresting officers observation that the subject was stuporous, further toxicological tests for the possible presence of dmgs are indicated. [Pg.486]

Commercially available PVB resias are generally soluble in lower molecular weight alcohols, glycol ethers, and certain mixtures of polar and nonpolar solvents. A representative Hst is found in Table 5. Grades with lower vinyl alcohol content are soluble in a wider variety of solvents. A common solvent for all of the Butvar resins is a combination of 60 parts of toluene and 40 parts of ethanol (95%) by weight. [Pg.452]

Typical normal-phase operations involved combinations of alcohols and hexane or heptane. In many cases, the addition of small amounts (< 0.1 %) of acid and/or base is necessary to improve peak efficiency and selectivity. Usually, the concentration of polar solvents such as alcohol determines the retention and selectivity (Fig. 2-18). Since flow rate has no impact on selectivity (see Fig. 2-11), the most productive flow rate was determined to be 2 mL miiT. Ethanol normally gives the best efficiency and resolution with reasonable back-pressures. It has been reported that halogenated solvents have also been used successfully on these stationary phases as well as acetonitrile, dioxane and methyl tert-butyl ether, or combinations of the these. The optimization parameters under three different mobile phase modes on glycopeptide CSPs are summarized in Table 2-7. [Pg.52]

The fact that in HPLC only UV-active components are registered, whereas in titration all basic functional groups are detected constitutes a difference in specificity (quality) and sensitivity (quantity) of these two methods relative to a given impurity. See Fig. 4.17 (left). [Solvent A (water) behaves differently from the other four as can be seen from Fig. 4.17 (right). The material was known to exist in a crystal modification that theoretically contains 3.2% water, and moderate drying will most likely drive off only the excess Indeed, the best-dried batches are all close to the theoretical point (circle, arrow in Figs. 4.16-17), and not near zero. This is only partly reflected in Table 4.15, column A for this reason tabular and graphic information has to be combined. Solvent B, which is an alcohol, behaves more like water... [Pg.213]

Analysis of reaction mixtures for 1-propanol and 2-propanol following incubation of NDPA with various rat liver fractions in the presence of an NADPH-generating system is shown in Table I ( ). Presence of microsomes leads to production of both alcohols, but there was no propanol formed with either the soluble enzyme fraction or with microsomes incubated with SKF-525A (an inhibitor of cytochrome P450-dependent oxidations). The combined yield of propanols from 280 ymoles of NDPA was 6.1 ymoles and 28.5 ymoles for the microsomal pellet and the 9000 g supernatant respectively. The difference in the ratio of 1- to 2-propanol in the two rat liver fractions may be due to differences in the chemical composition of the reaction mixtures (2) Subsequent experiments have shown that these ratios are quite reproducible. For comparison, Table I also shows formation of propanols following base catalyzed decomposition of N-propyl-N-nitrosourea. As expected (10,11), both propanol isomers were formed, the total yield in this case being almost quantitative. [Pg.41]

Later, in a modification to the above system, we reported the use of an indenylruthenium complex 2 as a racemization catalyst for the DKR of secondary alcohols, which does not require ketones but a weak base hke triethylamine and molecular oxygen to be achvated. The DKR with 2 in combination with immobilized Pseudomonas cepacia lipase (PCL, trade name. Lipase PS-C ) was carried out at a lower temperature (60°C) and provided good yields and high optical purities (Table 2). This paved the way for the omission of ketones as... [Pg.62]

Interestingly, for the transformation of both the racemic 1-hydroxyalkanephosphonates 41 and 2-hydroxyalkanephosphonates 43 into almost enantiopure acetyl derivatives 42 and 44, respectively, a dynamic kinetic resolution procedure was applied. Pamies and BackvalP used the enzymatic kinetic resolution in combination with a ruthenium-catalysed alcohol racemization and obtained the appropriate O-acetyl derivatives in high yields and with almost full stereoselectivity (Equation 25, Table 5). It should be mentioned that lowering... [Pg.177]

Table 9 Result of one-pot preparation method of optically active sec-alcohols (65a,b, 65e-i) by a combination of reduction of ketone and enantiomeric resolution in a water susupension medium... [Pg.14]

TABLE 5. PCP-related deaths in combination with alcohol or... [Pg.183]

As an anionic surfactant, a synthetic alkylate-base sulfonate containing about 60 % active material (Synacto 476) was used. To make it compatible with the injection water considered (composition in Table I) containing 1500 ppm Ca++ and Mg++ ions, a nonionic cosurfactant was combined with it, i.e. an unsaturated ethoxylated fatty alcohol with 8 ethylene oxide groups (Genapol). Their main characteristics and properties are listed in Table II. [Pg.276]

Poly(vinyl alcohol) has the structure 10.67. Poly(vinyl acetate) is the fully esterified derivative of polyfvinyl alcohol), in which the -OH groups are replaced by -OCOCH3 groups. As indicated in Table 10.5, commercial polyvinyl sizes are effectively copolymers of polyfvinyl acetate) and polyfvinyl alcohol) that vary in the degree of saponification of the ester groups. These products may comprise 100% of either polymer, or combinations of the two monomers in any proportions. Crotonic acid (2-butenoic acid), widely used in the preparation of resins, may also be a component. This compound exhibits cis-trans isomerism (Scheme 10.17). The solid trans form is produced readily by catalysed rearrangement of the liquid cis isomer. [Pg.98]


See other pages where Combination tables alcohols is mentioned: [Pg.88]    [Pg.701]    [Pg.671]    [Pg.88]    [Pg.85]    [Pg.102]    [Pg.260]    [Pg.205]    [Pg.301]    [Pg.6]    [Pg.610]    [Pg.116]    [Pg.117]    [Pg.122]    [Pg.94]    [Pg.737]    [Pg.40]    [Pg.191]    [Pg.61]    [Pg.339]    [Pg.121]    [Pg.194]    [Pg.532]    [Pg.71]    [Pg.75]    [Pg.171]    [Pg.157]    [Pg.34]    [Pg.57]    [Pg.207]   
See also in sourсe #XX -- [ Pg.135 ]




SEARCH



Alcohols table

Combination table

© 2024 chempedia.info