Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols anodic oxidation

Benzyl alcohol anodic oxidation in water over TEMPO DE (V=1.4Vvs. Ag/AgCI)... [Pg.407]

Furfural — see Furan-2-oarbaldehyde, 532 Furfuryl acetate, o -(butoxycarbonyl)-anodic oxidation, 1, 424 Furfuryi acrylate polymerization, 1, 279 Furfuryl alcohol configuration, 4, 544 2-Furfuryl alcohol polyoondensation, 1, 278 reactions, 4, 70-71 Furfuryl alcohol, dihydro-pyran-4-one synthesis from, 3, 815 Furfuryl alcohol, tetrahydro-polymers, 1, 276 rearrangement, 3, 773 Furfuryl chloride reactions... [Pg.637]

The existence of materials now included among the conducting polymers has long been known. The first electrochemical syntheses and their characterization as insoluble systems took place well over a century ago. In 1862 Letheby reported the anodic oxidation of aniline in a solution of diluted sulphuric acid, and that the blue-black, shiny powder deposited on a platinum electrode was insoluble in HjO, alcohol, and other organic solvents. Further experiments, including analytical studies, led Goppelsroeder to postulate in 1876 that oligomers were formed by the oxidation of aniline. [Pg.3]

Faraday, in 1834, was the first to encounter Kolbe-electrolysis, when he studied the electrolysis of an aqueous acetate solution [1], However, it was Kolbe, in 1849, who recognized the reaction and applied it to the synthesis of a number of hydrocarbons [2]. Thereby the name of the reaction originated. Later on Wurtz demonstrated that unsymmetrical coupling products could be prepared by coelectrolysis of two different alkanoates [3]. Difficulties in the coupling of dicarboxylic acids were overcome by Crum-Brown and Walker, when they electrolysed the half esters of the diacids instead [4]. This way a simple route to useful long chain l,n-dicarboxylic acids was developed. In some cases the Kolbe dimerization failed and alkenes, alcohols or esters became the main products. The formation of alcohols by anodic oxidation of carboxylates in water was called the Hofer-Moest reaction [5]. Further applications and limitations were afterwards foimd by Fichter [6]. Weedon extensively applied the Kolbe reaction to the synthesis of rare fatty acids and similar natural products [7]. Later on key features of the mechanism were worked out by Eberson [8] and Utley [9] from the point of view of organic chemists and by Conway [10] from the point of view of a physical chemist. In Germany [11], Russia [12], and Japan [13] Kolbe electrolysis of adipic halfesters has been scaled up to a technical process. [Pg.92]

Studies on the electrochemical oxidation of silyl-substituted ethers have uncovered a rich variety of synthetic application in recent years. Since acetals, the products of the anodic oxidation in the presence of alcohols, are readily hydrolyzed to carbonyl compounds, silyl-substituted ethers can be utilized as efficient precursors of carbonyl compounds. If we consider the synthetic application of the electrooxidation of silyl-substituted ethers, the first question which must be solved is how we synthesize ethers having a silyl group at the carbon adjacent to the oxygen. We can consider either the formation of the C-C bond (Scheme 15a) or the formation of the C-O bond (Scheme 15b). The formation of the C Si bond is also effective, but this method does not seem to be useful from a view point of organic synthesis because the required starting materials are carbonyl compounds. [Pg.69]

Various nucleophiles other than methanol can be introduced onto the carbonyl carbon. Anodic oxidation of acylsilanes in the presence of allyl alcohol, 2-methyl-2-propanol, water, and methyl /V-methylcarbamate in dichlorometh-ane affords the corresponding esters, carboxylic acid, and amide derivatives (Scheme 24) [16]. Therefore, anodic oxidation provides a useful method for the synthesis of esters and amides under neutral conditions. [Pg.74]

Because the direct electrochemical oxidation of NAD(P)H has to take place at an anode potential of + 900 mV vs NHE or more, only rather oxidation-stable substrates can be transformed without loss of selectivity—thus limiting the applicability of this method. The electron transfer between NADH and the anode may be accellerated by the use of a mediator. At the same time, electrode fouling which is often observed in the anodic oxidation of NADH can be prevented. Synthetic applications have been described for the oxidation of 2-hexene-l-ol and 2-butanol to 2-hexenal and 2-butanone catalyzed by yeast alcohol dehydrogenase (YADH) and the alcohol dehydrogenase from Thermoanaerobium brockii (TBADH) repectively with indirect electrochemical... [Pg.97]

A wide variety of electrolyte compositions used for anodic oxidation of silicon can be found in the literature. The electrolytes can be categorized in inorganic or organic solutions. In the latter case electrolytes like ethylene glycol [Ja2, Me6, Ma5, Mel3], methanol [Ma2] or tetrahydrofuryl alcohol [Be3] are used, with salts such as KN03 added in order to improve the conductivity. Studies with pure water [Ga2, Mo3, Hu3] as an electrolyte were performed, as well as with additions... [Pg.82]

Higher alcohols, however, cannot be used as neat liquids in electrolysis. For anodic oxidation those alcohols must be dissolved in appropriate solvents. Acetonitrile is the most frequently used solvent for that purpose. Electrochemical oxidation of n-butyl alcohol to n-butyraldehyde was achieved in moderately dilute acetonitrile solution in a current yield of 77% [9]. [Pg.174]

Because the reduction potential of ether is usually more negative than that of halides, examples that belong to this category are rather rare. Generally, cathodic reduction of ethers is similar to that of alcohols, and nonactivated ethers are not reducible under the conditions of electroreduction. Activated ethers such as benzylic and allylic ethers are elec-trochemically reduced to a limited extent (Scheme 7) [1, 15, 16]. Reduction of epoxides is usually difficult however, electroreductive cleavage of activated epoxides to the corresponding alcohols is reported [17, 18]. The cleavage of the C—O bond of ethers is more easily accomplished in anodic oxidation than in cathodic reduction, which is stated in Chapter 6. [Pg.203]

As an example, a convenient preparation of methyl (E) and (Z)-4,4-dimethoxybutenoa-tes can be performed by anodic oxidation of furfuryl alcohol, furfural or furoic acid via a dimethoxylated dihydrofuran intermediate (Scheme 132) [157]. [Pg.382]

One of the first notions of EGA-catalyzed reactions was the rationalization [8, 14] of the unexpected outcome of anodic oxidation of methyl arenes, (1), in MeGN containing various amounts of water. Preferentially A-benzyl acetamides, (3), rather than the benzyl alcohols, (2), were formed [15, 16] (with increasing amounts of water, increasing amounts of aldehyde was formed as a side product [16]). Since water is a more powerful nucleophile than MeCN, it is reasonable to believe that the carbocation formed by overall two-electron oxidation and deprotonation is initially trapped by water. However, the process is reversible in the presence of a strong EGA (protons liberated from the oxidized substrate), and the carbocation is eventually trapped by the excess MeCN, Scheme 1. [Pg.455]

We have studied the anodic oxidation of unsaturated alcohols using the controlled potential electrolysis (E = 1.9V vs SCE) in CH3CN-O.I mol/1 Et4NC104 solution in a divided cell [110]. The oxidation of 4-pentenol after consumption of 0.8 F/mol gave 2-methyltetrahydrofuran and tetrahydropyran as the major products. The oxidation of 5-pentenol gave 2-methyltetrahydro-pyran and oxepam, while the oxidation of 3-butenol under the same reaction conditions did not give the cyclic products. We rationalized this reaction as the electrongenerated acid (EGA) catalyzed intramolecular cyclization (Scheme 44). [Pg.126]

Under normal operation of an H2/O2 fuel cell, anodic oxidation of IT2 (or other hydrocarbons or alcoholic fuels)—that is, H2 —> 2H+ -1- 2e —produces protons that move through the polymer electrolyte membrane (PEM) to the cathode, where reduction of O2 (i.e., O2 -1- 2H+ -1- 2e —> H2O) produces water. The overall redox process is H2 -1-O2 —> H2O. The electronically insulating PEM forces electrons produced at the anode through an external electric circuit to the cathode to perform work in stationary power units, drive trains... [Pg.344]

Another heterocyclization is presented by Panifilow et al. Cyclic acetals and ethers are obtained by electrochemical oxidation of the terpenoid alcohol linalool 57 in methanol containing alkaline and sodium methoxide as electrolyt [102]. Anodic oxidation of the C(6)-C 7) double bond of linalool leads to the radical cation 58. In addition to direct methoxylation of the radical cation an attack on the hydroxyl group takes place. After a second one-electron oxidation and following methoxylation the regioisomeric cyclic acetal and a subsequent 1,2-hydride shift, the cyclic acetal 60 and the cyclic ether 61 are finally formed in yields of 16 and 24%, respectively (Scheme 13). As shown by Utley and co-workers bicyclic lactones 65 and 66 can be synthesized by anodic oxidation... [Pg.87]

The thermodynamic stabilities of phenonium ions have been determined based on bromide-transfer equilibria in the gas phase and, depending on the substituents, the bridged species (1) has been proposed as an intermediate or transition state on the potential-energy surface for the 1,2-aryl rearrangement of triarylvinyl cations (see Scheme 1). Phenonium ion (3) has been presented as an intermediate to account for the fact that lactonization of methyl 4-aryl-5-tosyloxy hexanoate (2) produces y-lactone (4) selectively under thermodynamic conditions, but affords 5-lactone (5) preferentially under kinetic conditions. It has been shown that anodic oxidation of frany-stilbene in alcohols in the presence of KF or BU4NBF4 is accompanied by its electro-oxidative rearrangement into diphenylacetaldehyde acetals. The mechanism outlined in Scheme 2 has been proposed" for the transformation. [Pg.487]

Nitrogen oxide radicals, derived from the anodic oxidation of nitrate ions in methanol, will oxidise primary alcohols. In the first stage of reaction, an a-... [Pg.263]

The ruthenium tetroxide dioxide catalytic system is effective for the oxidation of alkanols, although it will also react with any alkene groups or amine substituents that are present. The catalyst can be used in aqueous acetonitrile containing tetra-butylammonium hydroxide with platinum electrodes in an undivided cell Primary alcohols are oxidised to the aldehyde and secondary alcohols to the ketone [30]. Anodic oxidation of ruthenium dioxide generates the tetroxide, which is the effective oxidising agent. [Pg.265]

Nickel(lll) oxide, prepared from a nickel(ii) salt and sodium hypochlorite, is used for the oxidation of alkanols in aqueous alkali [46]. Residual nickel(Ii) oxide can be re-activated by reaction with sodium hypochlorite. Nickel oxides have also long been used in the manufacture of the positive pole in the Edison nickel-iron rechargeable battery, now largely superseded by die lead-acid accumulator, and in the Jungner nickel-cadmium batteries used as button cells for calculators [47]. Here, prepared nickel oxide is pressed into a holding plate of perforated nickel. Such prepared plates of nickel(lli) oxide have been proposed as reagent for the oxidation, in alkaline solution, of secondary alcohols to ketones and primary alcohols to carboxylic acids [48]. Used plates can be regenerated by anodic oxidation. [Pg.269]

The anodic oxidation of N-acyl a-amino acids in an alcohol solvent leads to the formation of N-acyl a-alkoxyaraines. This route is an alternative to the direct oxi-... [Pg.324]

In addition to the impregnation method with furfuryl alcohol, Kyotani et al. attempted to deposit pyrolytic carbon on the inside of the straight channels of anodic oxide film in the following way (9,12). They used two types of anodic aluminum oxide films with different channel diameters (30 and 230 nm). Each anodic oxide film... [Pg.555]

The behavior of BnMgBr (5d) is similar to that observed for compounds with higher alkyl groups, i.e. only the coupling product was detected and the earlier report on the additional formation of benzyl alcohol was not confirmed. On the other hand, reactions of Ar" radicals formed in the anodic oxidation of aryl Grignard reagents are different from those established for Aik, as is evident from the percent distribution of parent radicals in major products given in Table 7. [Pg.233]

Table 4. Comparison of yields in the chemical (nickel peroxide) and anodic oxidation (nickel hydroxide electrode) of primary alcohols... Table 4. Comparison of yields in the chemical (nickel peroxide) and anodic oxidation (nickel hydroxide electrode) of primary alcohols...
Ethers can be converted to acetals, and acetals to ortho esters, by anodic oxidation in an alcohol as solvent.194 Yields are moderate. In a similar reaction, certain amides, carbamates, and sulfonamides can be alkoxylated a to the nitrogen, e.g., MeS02NMe2 — Me-S02N(Me)CH20CH3.195 OS VII, 307. [Pg.703]


See other pages where Alcohols anodic oxidation is mentioned: [Pg.172]    [Pg.375]    [Pg.97]    [Pg.233]    [Pg.228]    [Pg.35]    [Pg.62]    [Pg.130]    [Pg.163]    [Pg.202]    [Pg.345]    [Pg.31]    [Pg.203]    [Pg.263]    [Pg.263]    [Pg.274]    [Pg.287]    [Pg.735]    [Pg.736]    [Pg.123]    [Pg.15]    [Pg.41]    [Pg.554]    [Pg.232]    [Pg.70]   
See also in sourсe #XX -- [ Pg.802 ]

See also in sourсe #XX -- [ Pg.802 ]

See also in sourсe #XX -- [ Pg.7 , Pg.802 ]

See also in sourсe #XX -- [ Pg.7 , Pg.802 ]

See also in sourсe #XX -- [ Pg.802 ]




SEARCH



Anode oxidation

Anodes oxides

Anodic oxidation

Anodic oxides

Benzyl alcohol anodic oxidation

© 2024 chempedia.info