Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohol to Acid Oxidation State

For a review of chromium-amine complex oxidations, see Luzzio, F. A. Org. React. 1998, 53, 1-221. [Pg.68]

To a stirred solution of the alcohol in acetone ( 0.1 M) at 0 °C was added Jones reagent (8 N, see chapter 1 for the preparation of this reagent) until the solution remained orange. The reaction was left to stir for 10 min before water (40 mL) was added, and the aqueous layer was extracted with hexanes (4 x 30 mL). The combined organic layers were washed with brine (50 mL), dried over MgS04, and concentrated in vacuo to afford the acid at 89% yield. [Pg.68]


The toxic metals present in industrial effluent streams include heavy metals such as silver, lead, mercury, nickel, zinc, and chromium. These heavy metals accumulate in soil and are eventually transferred to the human food chain. In irradiation treatment the general strategy is the reduction of higher oxidation state ions to lower oxidation state ions in lower oxidation state the solubility is usually lower, so often the reduced ions can be separated by precipitation. The reduction is done by the hydrated electron and hydrogen atom (under oxygen-free conditions) and/or by other reducing-type radicals formed in hydroxyl radical + alcohol or in hydroxyl radical + acetic acid reaction (see for instance reaction (O 23.34) and (O 23.144)) (Haji-Saeid 2007 Chaychian et al. 1998 Belloni and Mostafavi 2004 Belloni and Remita 2008). [Pg.1319]

Vigorous oxidation leads to the formation of a carboxylic acid but a number of meth ods permit us to stop the oxidation at the intermediate aldehyde stage The reagents most commonly used for oxidizing alcohols are based on high oxidation state transition met als particularly chromium(VI)... [Pg.641]

Potassium permanganate (KMn04) will also oxidize pri mary alcohols to carboxylic acids What is the oxidation state of manganese in KMn04 ... [Pg.641]

Aldehydes are formed by the reduction of the ester of the corresponding acid to the alcohol, and then oxidising the alcohol with heated copper as catalyst. It is well known that when primary alcohols in the gaseous state are passed over finely-divided copper dust, obtained by reduction of copper oxide, at 250° to 400°, they yield hydrogen, and aldehydes or ketones respectively. [Pg.178]

Other Gas Reactions. Several other reactive gases or vapours were examined but found to be unsatisfactory. No ester formation ( 1745 cm"1) was found when oxidatized films were exposed to acetic acid or formic acid vapour. Alcohol/carboxylic acid reactions in the solid state have often been suggested as the source of ester products, but not substantiated (4,5). Gaseous ammonia reacted with carboxylic acid groups to give absorptions at 1550 cm"1 [-C(=0)-0 ] and 1300 cm"1 (NHi +). However, these absorptions were very broad and the method inferior to acid measurement by SF. Although N20 did not react with oxidized polyolefins, the reaction of N02 with oxi-... [Pg.385]

The transformation of the cyano group could also introduce a new chiral center under diastereoselective control (Figure 5.13). Grignard-transimination-reduction sequences have been employed in a synthesis of heterocyclic analogues of ephedrine [81]. The preferential formation of erythro-/3-amino alcohols may be explained by preferential hydride attack on the less-hindered face of the intermediate imine [82], and hydrocyanation of the imine would also appear to proceed via the same type of transition state. In the case of a,/3-unsaturated systems, reduction- transimination-reduction may be followed by protection of the /3-amino alcohol to an oxazolidinone, ozonolysis with oxidative workup, and alkali hydrolysis to give a-hydroxy-/3-amino acids [83]. This method has been successfully employed in the synthesis L-threo-sphingosine [84]. [Pg.117]

A facile method for the oxidation of alcohols to carbonyl compounds has been reported by Varma et al. using montmorillonite K 10 clay-supported iron(III) nitrate (clayfen) under solvent-free conditions [100], This MW-expedited reaction presumably proceeds via the intermediacy of nitrosonium ions. Interestingly, no carboxylic acids are formed in the oxidation of primary alcohols. The simple solvent-free experimental procedure involves mixing of neat substrates with clayfen and a brief exposure of the reaction mixture to irradiation in a MW oven for 15-60 s. This rapid, ma-nipulatively simple, inexpensive and selective procedure avoids the use of excess solvents and toxic oxidants (Scheme 6.30) [100]. Solid state use of clayfen has afforded higher yields and the amounts used are half of that used by Laszlo et al. [17,19]. [Pg.197]

Amphoteric molecules of this type, where the acidic and basic sites are relatively close to each other but cannot interact directly, can heterolytically cleave H-X and C-X bonds where X is a halide, alkoxide, amide, alcohol, thiol, trimethylsilyl, or alkyl group.18,18a The ability to effect changes in the reactivity of borollide complexes by adjusting metal oxidation states and ligands allows fine-tuning of catalytic and other properties, which in turn advances the application of these compounds in synthesis. [Pg.6]

Nitramines are known to photodissociate from their jt,jt state to give aminyl and nitric oxide radicals in the presence of an acid the aminyl radicals are protonated to give aminium radicals, which can initiate addition to olefins. As a synthetic reaction, photolysis of nitramines in the presence of acids can be conveniently run under oxygen to give oxidative addition similar to those shown in equation 145 indeed TV-nitrodimethylamine is photolysed with triene 299 under such conditions to give a mixture of 301 and 302, similar to results observed in the oxidative nitrosamine photoaddition169. To simplify the isolation, the crude products are reduced with LAH to form the open-chain amino alcohol 303. Some other oxidative photoadditions of N-nitro dimethylamine to other olefins are reported. As the photoreaction has to use a Corex filter and product yields are no better than those shown by nitrosamines, further investigations were scarcely carried out. [Pg.816]

The cyde is central to the oxidation of any fuel that yields acetyl CoA, induding glucose, fritty acids, ketone bodies, ketogenic amino acids, and alcohol There is no hormonal control of the cyde, as activity is necessary irrespective of the fed or fasting state. Control is exerted by the energy status of the cell. [Pg.179]

The pyridoxal amino acid analog (Pal) was stereoselectively synthesized from a readily available pyridoxol derivative and the residue was incorporated into peptides at the alcohol oxidation state in protected form. Oxidation of the 4 -alcohol group to the desired aldehyde was achieved post-synthetically on free. [Pg.12]

Following a similar strategy, an ingenious mixed resin bed quench and purification strategy was devised for the Dess-Martin periodinane mediated conversion of alcohols to carbonyls. This hypervalent iodine oxidant was viewed as containing an inherent masked carboxylic acid functionality that was revealed at the end of the reaction (Species (11) Scheme 2.30). Therefore purification was easily achieved by treatment of the reaction mixture with a mixed-resin bed containing both a thiosulfate resin and a polymeric base. The thiosulfate polymer was used to reduce excess hypervalent iodine lodine(V) and (III) oxidation states species to 2-iodoben-zoic acid (11), which was in turn scavenged by the polymeric base [51]. [Pg.74]

ARO reaction with phenols and alcohols as nucleophiles is a logical extension of HKR of epoxides to synthesize libraries of stereochemically defined ring-opened products in high optical purity. To this effect Annis and Jacobsen [69] used their polymer-supported Co(salen) complex 36 as catalyst for kinetic resolution of epoxides with phenols to give l-aiyloxy-2-alcohols in high yield, purity and ee (Scheme 17). Conducting the same reaction in the presence of tris(trifluoromethyl)methanol, a volatile, nonnucleophilic protic acid additive accelerates KR reaction with no compromise with enantioselectivity and yield. Presumably the additive helped in maintaining the Co(III) oxidation state of the catalyst. [Pg.320]


See other pages where Alcohol to Acid Oxidation State is mentioned: [Pg.89]    [Pg.68]    [Pg.89]    [Pg.68]    [Pg.185]    [Pg.1723]    [Pg.93]    [Pg.98]    [Pg.793]    [Pg.26]    [Pg.309]    [Pg.225]    [Pg.233]    [Pg.650]    [Pg.793]    [Pg.131]    [Pg.194]    [Pg.279]    [Pg.380]    [Pg.255]    [Pg.199]    [Pg.112]    [Pg.16]    [Pg.50]    [Pg.150]    [Pg.345]    [Pg.464]    [Pg.26]    [Pg.192]    [Pg.251]    [Pg.290]    [Pg.563]    [Pg.790]    [Pg.779]   


SEARCH



Acid Oxidation State

Alcohol oxidation states

Oxidation to acids

Oxidation to alcohols

© 2024 chempedia.info