Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Air molecular weight

Because a molecule of water vapor is lighter (molecular weight =18) than that of dry air (molecular weight = about 29), moist air is lighter than dry air at the same temperature. This is somewhat unexpected, because the popular conception is that humid air (which contains more water) is heavier than dry air. [Pg.40]

Weighs less than air (molecular weight 28 kg/kmol air 28,8)... [Pg.210]

Weighs much more than air (molecular weight 44 kg/kmol) and accrunulates... [Pg.210]

If the vapor pressure and density, respectively, of chloropicrin are 3178.3 NW and 1650 kg/m, estimate the substances diffusivity in air. Molecular weight of chloropicrin is 164.39. [Pg.237]

Separation of low-molecular-weight materials. Low-molecular-weight materials are distilled at high pressure to increase their condensing temperature and to allow, if possible, the use of cooling water or air cooling in the column condenser. Very low... [Pg.74]

Thus the quantitative elemental analysis of the fuel establishes an overall formula, (CH O ) , where the coefficient x, related to the average molecular weight, has no effect on the fuel-air ratio. [Pg.179]

Benzene. Pure benzene (free in particular from toluene) must be used, otherwise the freezing-point is too low, and crystallisation may not occur with ice-water cooling alone. On the other hand, this benzene should not be specially dried immediately before use, as it then becomes slightly hygroscopic and does not give a steady freezing-point until it has been exposed to the air for 2-3 hours. Many compounds (particularly the carboxylic acids) associate in benzene, and molecular weights determined in this solvent should therefore be otherwise confirmed. [Pg.435]

The melting points of these esters are usually much lower than those of the corresponding 3 5 dinitrobenzoates their preparation, therefore, offers no advantages over the latter except for alcohols of high molecular weight and for polyhydroxy compounds. The reagent is, however, cheaper than 3 5 dinitrobenzoyl chloride it hydrolyses in the air so that it should either be stored under light petroleum or be prepared from the acid, when required, by the thionyl chloride or phosphorus pentachloride method. [Pg.263]

Reflux gently in a test-tube under a short air condenser 1 g. of the base with 2 5 mols or 3 0 g. (3 0 ml.) if the molecular weight is unknown of redistilled acetic anhydride for 10-15 minutes. Cool the reaction mixture and pour it into 20 ml. of cold water (CAUl ION). Boil to decompose the excess of acetic anhydride. When cold, filter the residual insoluble acetyl derivative and wash it with a little cold water. Recrystal-/ise from water or from dilute alcohol. [Pg.652]

Aromatic aldehydes usually have relatively high boiling points, but distil with little or no decomposition. The vapours burn with a smoky flame. They are easily oxidised on standing in the air into the corresponding acids the odours are often pleasant and characteristic. Aromatic aldehydes, by virtue of their high molecular weight, yield... [Pg.720]

Although it applies to a totally different kind of interface, the value of 7 calculated in the example is on the same order of magnitude as the 7 value for the surface between air and liquids of low molecular weight. [Pg.217]

Furfural reacts with ketones to form strong, crosslinked resins of technical interest in the former Soviet Union the U.S. Air Force has also shown some interest (42,43). The so-called furfurylidene acetone monomer, a mixture of 2-furfurylidene methyl ketone [623-15-4] (1 )> bis-(2-furfurylidene) ketone [886-77-1] (14), mesityl oxide, and other oligomers, is obtained by condensation of furfural and acetone under basic conditions (44,45). Treatment of the "monomer" with an acidic catalyst leads initially to polymer of low molecular weight and ultimately to cross-linked, black, insoluble, heat-resistant resin (46). [Pg.79]

Quality Specifications. Because of the extreme sensitivity of polyamide synthesis to impurities ia the iagredients (eg, for molecular-weight control, dye receptivity), adipic acid is one of the purest materials produced on a large scale. In addition to food-additive and polyamide specifications, other special requirements arise from the variety of other appHcations. Table 8 summarizes the more important specifications. Typical impurities iaclude monobasic acids arising from the air oxidation step ia synthesis, and lower dibasic acids and nitrogenous materials from the nitric acid oxidation step. Trace metals, water, color, and oils round out the usual specification Hsts. [Pg.246]

Raw Materials. Eor the first decade of PET manufacture, only DMT could be made sufficiently pure to produce high molecular weight PET. DMT is made by the catalytic air oxidation of -xylene to cmde TA, esterification with methanol, and purification by crystallization and distillation. After about 1965, processes to purify cmde TA by hydrogenation and crystallization became commercial (52) (see Phthalic ACID AND OTHER... [Pg.327]

PVF is more thermally stable than other vinyl halide polymers. High molecular weight PVF is reported to degrade in an inert atmosphere, with concurrent HF loss and backbone cleavage occurring at about 450°C (71,72). In air, HF loss occurs at about 350°C, followed by backbone cleavage around 450°C. [Pg.380]

Substances other than enzymes can be immobilized. Examples include the fixing of heparin on polytetrafluoroethylene with the aid of PEI (424), the controUed release of pesticides which are bound to PEI (425), and the inhibition of herbicide suspensions by addition of PEI (426). The uptake of anionic dyes by fabric or paper is improved if the paper is first catonized with PEI (427). In addition, PEI is able to absorb odorizing substances such as fatty acids and aldehydes. Because of its high molecular weight, PEI can be used in cosmetics and body care products, as weU as in industrial elimination of odors, such as the improvement of ambient air quaHty in sewage treatment plants (428). [Pg.13]

Chromium Oxide-Based Catalysts. Chromium oxide-based catalysts were originally developed by Phillips Petroleum Company for the manufacture of HDPE resins subsequendy, they have been modified for ethylene—a-olefin copolymerisation reactions (10). These catalysts use a mixed sihca—titania support containing from 2 to 20 wt % of Ti. After the deposition of chromium species onto the support, the catalyst is first oxidised by an oxygen—air mixture and then reduced at increased temperatures with carbon monoxide. The catalyst systems used for ethylene copolymerisation consist of sohd catalysts and co-catalysts, ie, triaLkylboron or trialkyl aluminum compounds. Ethylene—a-olefin copolymers produced with these catalysts have very broad molecular weight distributions, characterised by M.Jin the 12—35 and MER in the 80—200 range. [Pg.399]


See other pages where Air molecular weight is mentioned: [Pg.1161]    [Pg.238]    [Pg.19]    [Pg.26]    [Pg.153]    [Pg.19]    [Pg.160]    [Pg.216]    [Pg.1195]    [Pg.376]    [Pg.376]    [Pg.1161]    [Pg.238]    [Pg.19]    [Pg.26]    [Pg.153]    [Pg.19]    [Pg.160]    [Pg.216]    [Pg.1195]    [Pg.376]    [Pg.376]    [Pg.77]    [Pg.288]    [Pg.445]    [Pg.539]    [Pg.2628]    [Pg.126]    [Pg.124]    [Pg.673]    [Pg.436]    [Pg.333]    [Pg.243]    [Pg.284]    [Pg.375]    [Pg.385]    [Pg.70]    [Pg.13]    [Pg.333]    [Pg.333]    [Pg.387]    [Pg.388]    [Pg.401]    [Pg.418]    [Pg.16]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Air weight

© 2024 chempedia.info