Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aggregation, salt

Soft Materials (1) Talc, dried filter-press cakes, soapstone, waxes, aggregated salt ciystals (2) gypsum, rock salt, ciystahine salts in gener, soft coal (3) calcite, marble, soft limestone, barites, chalk, brimstone. [Pg.1829]

This section considers the Donnan equilibrium which is established by the equilibrium distribution of a simple electrolyte between an aqueous protein-electrolyte mixture and an aqueous solution of the same simple electrolyte, when the two phases are separated by a semipermeable membrane. A difference in osmotic pressure is estabhshed across the membrane permeable to all other species but proteins. This difference is measurable and provides important information about the protein-protein interaction in solution [37, 109-112, 116]. The principal goal of the theory is to explain how factors such as protein concentration, pH, protein aggregation, salt concentration and its composition, influence the osmotic pressure. At the moment this goal seems to be too ambitious these systems are often complicated mixtures of highly concentrated electrolytes and protein molecules, and the principal forces are not easy to identify [117]. [Pg.220]

Food formulations are complex colloidal systems that may contain water and oil, fat substances, protein aggregates, salts, and soluble carbohydrates, and starch granules or gels. Emulsifiers present a special challenge as regards their safety and the stability of emulsions. Compounds used include mono- and digylcerides, sorbitan fatty acid esters, polyoxyethylene sorbitan esters, and phospholipids. The trend is to use most natural additives as possible, such as proteins and phospholipids (30). [Pg.567]

Additives, whether hydrophobic solutes, other surfactants or polymers, tend to nucleate micelles at concentrations lower than in the absence of additive. Due to this nucleating effect of polymers on micellization there is often a measurable erne, usually called a critical aggregation concentration or cac, below the regular erne observed in the absence of added polymer. This cac is usually independent of polymer concentration. The size of these aggregates is usually smaller than that of free micelles, and this size tends to be small even in the presence of added salt (conditions where free micelles tend to grow in size). [Pg.2603]

For a more complete understanding of colloid stability, we need to address the kinetics of aggregation. The theory discussed here was developed to describe coagulation of charged colloids, but it does apply to other cases as well. First, we consider the case of so-called rapid coagulation, which means that two particles will aggregate as soon as they meet (at high salt concentration, for instance). This was considered by von Smoluchowski 1561 here we follow [39, 57]. [Pg.2683]

A combination of equation (C2.6.13), equation (C2.6.14), equation (C2.6.15), equation (C2.6.16), equation (C2.6.17), equation (C2.6.18) and equation (C2.6.19) tlien allows us to estimate how low the electrolyte concentration needs to be to provide kinetic stability for a desired lengtli of time. This tlieory successfully accounts for a number of observations on slowly aggregating systems, but two discrepancies are found (see, for instance, [33]). First, tire observed dependence of stability ratio on salt concentration tends to be much weaker tlian predicted. Second, tire variation of tire stability ratio witli particle size is not reproduced experimentally. Recently, however, it was reported that for model particles witli a low surface charge, where tire DL VO tlieory is expected to hold, tire aggregation kinetics do agree witli tire tlieoretical predictions (see [60], and references tlierein). [Pg.2684]

A salt originally called sodium hexametaphosphate, with n believed to be 6, is now thought to contain many much larger anion aggregates. It has the important property that it sequesters , i.e. removes, calcium ions from solution. Hence it is much used as a water-softener. [Pg.247]

Methyl group (Section 2 7) The group —CH3 Mevalonic acid (Section 26 10) An intermediate in the biosyn thesis of steroids from acetyl coenzyme A Micelle (Section 19 5) A sphencal aggregate of species such as carboxylate salts of fatty acids that contain a lipophilic end and a hydrophilic end Micelles containing 50-100 car boxylate salts of fatty acids are soaps Michael addition (Sections 18 13 and 21 9) The conjugate ad dition of a carbanion (usually an enolate) to an a 3 unsatu rated carbonyl compound... [Pg.1288]

Lithium hydroxide can be used for preparation of numerous lithium salts. The dominant use is the preparation of lithium stearate [4485-12-5], which is added to lubricating greases in amounts up to about 10% by weight. This salt has very low water solubiHty and extends the acceptable viscosity for the grease to both low and high temperatures (see Lubrication and lubricants). Lithium hydroxide is also used in production of dyes (62) and has been proposed as a source of lithium ion for inhibition of alkaH-aggregate expansive reactivity in concrete (63). [Pg.226]

Mo20 24 2h), and octamolybdate, MogO g) ions. Even larger aggregates may be present in solution and in salts. Both and... [Pg.469]

Amino-4,6-dichlorophenol. This compound (11) forms long white needles from carbon disulfide, and aggregate spheres from benzene. It sublimes at 70—80°C (8 Pa = 0.06 mm Hg) and decomposes above 109 °C. It is freely soluble in benzene and carbon disulfide, and is sparingly soluble in petroleum ether, water, and ethanol. The free base is unstable and the hydrochloride salt (mp 280—285°C, dec) is employed commercially. [Pg.314]

Fig. 10. Polymerization behavior of silica. In basic solution (B), particles grow in size and decrease in number in acidic solution or in the presence of flocculating salts (A), particles aggregate into three-dimensional networks and form gels (1). Fig. 10. Polymerization behavior of silica. In basic solution (B), particles grow in size and decrease in number in acidic solution or in the presence of flocculating salts (A), particles aggregate into three-dimensional networks and form gels (1).
Gum-Saline. Gum is a galactoso—gluconic acid having molecular weight of approximately 1500. First used (16) in kidney perfusion experiments, gum—saline enjoyed great popularity as a plasma expander starting from the end of World War I. The aggregation state of gum depends on concentration, pH, salts, and temperature, and its coUoid oncotic pressure and viscosity are quite variable. Conditions were identified (17) under which the viscosity would be the same as that of whole blood. [Pg.160]

Od-fumace blacks used by the mbber iadustry contain over 97% elemental carbon. Thermal and acetylene black consist of over 99% carbon. The ultimate analysis of mbber-grade blacks is shown ia Table 2. The elements other than carbon ia furnace black are hydrogen, oxygen, and sulfur, and there are mineral oxides and salts and traces of adsorbed hydrocarbons. The oxygen content is located on the surface of the aggregates as C O complexes. The... [Pg.542]


See other pages where Aggregation, salt is mentioned: [Pg.52]    [Pg.87]    [Pg.122]    [Pg.52]    [Pg.87]    [Pg.122]    [Pg.106]    [Pg.2575]    [Pg.2681]    [Pg.2900]    [Pg.125]    [Pg.54]    [Pg.353]    [Pg.33]    [Pg.528]    [Pg.207]    [Pg.28]    [Pg.402]    [Pg.440]    [Pg.440]    [Pg.9]    [Pg.16]    [Pg.472]    [Pg.479]    [Pg.487]    [Pg.488]    [Pg.489]    [Pg.489]    [Pg.490]    [Pg.490]    [Pg.490]    [Pg.491]    [Pg.491]    [Pg.229]    [Pg.117]    [Pg.477]    [Pg.298]   
See also in sourсe #XX -- [ Pg.266 ]




SEARCH



Aggregation number bile salts

Aggregation, TCNQ salt-polymer

Bile salt aggregates

Lithium salts, aggregation

© 2024 chempedia.info