Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substitutive adsorption

One of the principal reasons for failure of the adhesion bonds is a specific adsorption reaction of the medium with the material to be cemented at the boundary with the adhesive. There is an adsorption substitution of adhesive-substrate bonds by medium-substrate bonds. Surface structural defects that are present in each solid are the first to be subjected to adsorption. It is to be expected that the probability of appearance of such defects is higher at an interface of two materials with different properties. The rate of penetration of the medium along the polymer-substrate interface frequently substantially exceeds the rate of diffusion of the medium in pure polymer [212]. Adsorption substitution of the polymer macromolecules by water molecules on the metal surface explains the low water resistance of such adhesive-bonded joints as fluoroplastic-steel or polyethylene-steel [34]. The adhesion strength, which decreases during hold-up of adhesive-bonded joints in water, is frequently reestablished after the joints are dried [213]. [Pg.268]

A more dramatic type of restmctiiring occurs with the adsorption of alkali metals onto certain fee metal surfaces [39]. In this case, multilayer composite surfaces are fomied in which the alkali and metal atoms are intemiixed in an ordered stmcture. These stmctiires involve the substitution of alkali atoms into substrate sites, and the details of the stmctiires are found to be coverage-dependent. The stmctiires are influenced by the repulsion between the dipoles fomied by neighbouring alkali adsorbates and by the interactions of the alkalis with the substrate itself [40]. [Pg.299]

The question of whether adsorption should be done ia the gas or Hquid phase is an interesting one. Often the choice is clear. Eor example, ia the separation of nitrogen from oxygen, Hquid-phase separation is not practical because of low temperature requirements. In C q—olefin separation, a gas-phase operation is not feasible because of reactivity of feed components at high temperatures. Also, ia the case of substituted aromatics separation, such as xylene from other Cg aromatics, the inherent selectivities of iadividual components are so close to one another that a simulated moving-bed operation ia hquid phase is the only practical choice. [Pg.303]

Several types of nitrogen substituents occur in known dye stmetures. The most useful are the acid-substituted alkyl N-substituents such as sulfopropyl, which provide desirable solubiUty and adsorption characteristics for practical cyanine and merocyanine sensitizers. Patents in this area are numerous. Other types of substituents include N-aryl groups, heterocycHc substituents, and complexes of dye bases with metal ions (iridium, platinum, zinc, copper, nickel). Heteroatom substituents directly bonded to nitrogen (N—O, N—NR2, N—OR) provide photochemically reactive dyes. [Pg.397]

Chemical Equihbrium When A is not in adsorptive equilibrium, it is assumed to be in chemical equilibrium, with.p =p, JK py. This expression is substituted for p wherever it appears in the rate equation. Then... [Pg.692]

Granular media filtration is used for treating aqueous waste streams. The filter media consists of a bed of granular particles (typically sand or sand with anthracite or coal). The anthracite has adsorptive characteristics and hence can be beneficial in removing some biological and chemical contaminants in the wastewater. This material may also be substituted for activated charcoal. [Pg.243]

Finally, two sets of physical properties have been correlated by the Hammett equation. Sharpe and Walker have shown that changes in dipole moment are approximately linearly correlated with ct-values, and Snyder has recently correlated the free energies of adsorption of a series of substituted pyridines with u-values. All the reaction constants for the series discussed are summarized in Table V. [Pg.232]

The low yields of 6,6 -disubstituted-2,2 -bipyridincs recorded in Table I are probably the result of steric retardation of the adsorption of 2-substituted pyridines. This view is supported by the observation that 2-methylpyridine is a much weaker poison for catalytic hydrogenations than pyridine. On the other hand, the quinolines so far examined (Table II) are more reactive but with these compounds the steric effect of the fused benzene ring could be partly compensated by the additional stabilization of the adsorbed species, since the loss of resonance energy accompanying the localization of one 71-electron would be smaller in a quinoline than in a pyridine derivative. [Pg.196]

Examinations of the connection between the chemical structure of alkylaryl sulfates and their physical-chemical properties show that solubility, aggregations and adsorption behavior, foam behavior and consistency are determined by the following structural elements the length of the alkyl chain, the position at which the benzene ring is connected to the alkyl chain, and the substitution pattern of the benzene ring [187,188]. [Pg.88]


See other pages where Substitutive adsorption is mentioned: [Pg.183]    [Pg.184]    [Pg.503]    [Pg.404]    [Pg.183]    [Pg.184]    [Pg.503]    [Pg.404]    [Pg.478]    [Pg.542]    [Pg.1758]    [Pg.1772]    [Pg.17]    [Pg.238]    [Pg.318]    [Pg.292]    [Pg.389]    [Pg.44]    [Pg.472]    [Pg.150]    [Pg.151]    [Pg.327]    [Pg.70]    [Pg.29]    [Pg.347]    [Pg.347]    [Pg.400]    [Pg.1312]    [Pg.228]    [Pg.109]    [Pg.112]    [Pg.21]    [Pg.191]    [Pg.198]    [Pg.1160]    [Pg.819]    [Pg.280]    [Pg.170]    [Pg.494]   
See also in sourсe #XX -- [ Pg.239 ]

See also in sourсe #XX -- [ Pg.418 ]




SEARCH



Ammonia adsorption substituted

Physical Adsorption - Substitutive Desorption

© 2024 chempedia.info