Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption enzymatic

BIOELECTROCHEMISTRY. Application of the principles and techniques of electrochemistry to biological and medical problems. It includes such surface and interfacial phenomena as the electrical properties of membrane systems and processes, ion adsorption, enzymatic clotting, transmembrane pH and electrical gradients, protein phosphorylation, cells, and tissues. [Pg.203]

Fructose—Dextrose Separation. Emctose—dextrose separation is an example of the appHcation of adsorption to nonhydrocarbon systems. An aqueous solution of the isomeric monosaccharide sugars, C H 2Dg, fmctose and dextrose (glucose), accompanied by minor quantities of polysaccharides, is produced commercially under the designation of "high" fmctose com symp by the enzymatic conversion of cornstarch. Because fmctose has about double the sweetness index of dextrose, the separation of fmctose from this mixture and the recycling of dextrose for further enzymatic conversion to fmctose is of commercial interest (see Sugar Sweeteners). [Pg.300]

Second-order enzymatic reactions require two adsorption events at the same site. For the reaction A + B — P, there may be a compulsory order of adsorption (e.g., first A, then B) or the two reactants may adsorb in a random order. Different assumptions lead to slightly different kinetic expressions, but a general form with theoretical underpinnings is... [Pg.439]

Bacteria have been Implicated in the formation of N-nitroso compounds under a wide variety of conditions representing both vitro and vivo situations Mechanisms of participation and/or catalysis Include a) decrease of the pH of the system, b) reduction of nitrate to nitrite, c) adsorption of amine onto the cell surface or cytoplasmic membrane, d) actual enzymatic formation. The literature of the field will be reviewed and experimental evidence which tests the above mechanisms will be presented ... [Pg.157]

Such analytes require carefully chosen extraction conditions in terms of pH, solvent composition and technique. Also, these analytes tend to become lost by adsorption on (glass) surfaces or undergo conjugation so that a chemical or enzymatic deconjugation step may be required. Often only the use of radiotracers... [Pg.58]

With findings of Doi and coworkers who proposed a two-step reaction for enzymatic polyester hydrolysis, namely adsorption of the depolymerase to the polymer and subsequent hydrolysis [62,63]. [Pg.305]

Lower and coworkers [199] have investigated the adsorption of T4 lysozyme on colloidal silica. It was observed that the enzymatic activity decreased upon adsorption due to the differences in adsorbed enzyme structure and orientation as well as the electrostatic effects. [Pg.467]

In Fig. 3, the pepsin dissolved in HC1, without interaction with any solid, showed a maximum at 272 nm. After interaction with the disordered cancrinite and the intermediate phase, a small decrease in the absorbance maximum of the pepsin spectrum was observed. This small decrease is due to the pepsin adsorption on the solid surfaces. The pepsin activity was also determined by the proteolysis reaction of a denatured haemoglobin solution at different times. Fig. 4 shows the obtained results. One can see, that the enzymatic activities (determined as absorbance), presented by the tested solids were very similar among them. These results show that pepsin enzymatic activity is not lost after the contact the pepsin with the tested solids. Therefore, the absorbance decrease observed in Fig. 4, is produced by the pepsin adsorption on the tectosilicate surface, and not by chemical reactions between pepsin and the tectosilicates... [Pg.148]

Because of the structure-function relationship for (globular) proteins, adsorption-induced changes in the molecular structure are likely to affect the biological activity of the protein, e.g., the enzymatic activity. In soils, as well as in a wide variety of other systems, the impact on biological... [Pg.116]

The enzymatic activities of O -chymotrypsin in solution and adsorbed at the different surfaces are presented in Fig. 11, where the specific enzymatic activity (defined as activity per unit mass of protein) is plotted as a function of temperature. The enzyme loses activity due to adsorption. On the hydrophobic Teflon and PS surfaces, the activity is completely gone, whereas on the hydrophilic silica surface, or-chymotrypsin has retained most of its biological function. These differences are in agreement with the adsorption isotherms and the circular dichroism spectra. The influence of the hydrophobicity of the sorbent surface on the affinity of the protein for the sorbent surface, as judged from the rising parts of the adsorption isotherms (Fig. 8), suggests that the proteins are more perturbed and, hence, less biologically active when adsorbed at hydrophobic surfaces. Also, the CD spectra indicate that adsorption-induced structural perturbations are more severe at hydrophobic surfaces. [Pg.119]

Szleifer I (1997) Protein adsorption on surfaces with grafted polymers a theoretical approach. Biophys J 72 595-612 Tanford C (1973) The hydrophobic effect. John Wiley Sons, Inc., Hoboken Van Dulm P, Norde W, Lyklema J (1981) Ion participation in protein adsorption at solid surfaces. J Colloid Interf Sci 82 77-82 Zoungrana T, Findenegg GH, Norde W (1997) Structure, stability and activity of adsorbed ensymes. J Colloid Interf Sci 190 437-448 Zoungrana T, Norde W (1997) Thermal stability and enzymatic activity of a-chymotrypsin adsorbed on polystyrene surfaces. Colloid Surf B 9 157-167... [Pg.123]

For simplicity, up to now, first-order kinetics have been assumed, but obviously other rate laws may apply. Further complications can be generated by the presence of multiple paths for M on a variety of sites exhibiting different kinetics [5,11] or sequential enzymatic processes [100], Some complexes, labelled as lipophilics , have been shown to cross the membrane without the need for specific pre-adsorption sites [5,11,18,19,50] see also Chapters 5, 6 and 10 in this volume. Fortin and Campbell [76] have recently reported the accidental uptake of Ag+ induced by thiosulfate ligand. [Pg.194]

Monoglyceride (MG) is one of the most important emulsifiers in food and pharmaceutical industries [280], MG is industrially produced by trans-esterification of fats and oils at high temperature with alkaline catalyst. The synthesis of MG by hydrolysis or glycerolysis of triglyceride (TG) with immobilized lipase attracted attention recently, because it has mild reaction conditions and avoids formation of side products. Silica and celite are often used as immobilization carriers [281], But the immobilized lipase particles are difficult to reuse due to adsorption of glycerol on this carriers [282], PVA/chitosan composite membrane reactor can be used for enzymatic processing of fats and oils. The immobilized activity of lipase was 2.64 IU/cm2 with a recovery of 24%. The membrane reactor was used in a two-phase system reaction to synthesize monoglyceride (MG) by hydrolysis of palm oil, which was reused for at least nine batches with yield of 32-50%. [Pg.168]

Humic substances. Analogous to the reactions described above, humic substances (the polymeric pigments from soil (humus) and marine sediments) can be formed by both enzymatic and non-enzymatic browning. High concentrations of free calcium and phosphate ions and supersaturation with respect to hydroxyapatite can sustain in soil, because adsorption of humic acids to mineral surfaces inhibits crystal growth (Inskeep and Silvertooth, 1988). A similar adsorption to tooth mineral in a caries lesion can be anticipated for polycarboxylic polymers from either the Maillard reaction or enzymatic browning. [Pg.36]

To elucidate some enzymatic characteristics of the isolated laccases I, II, and III, substrate specificities for several simple phenols, electrophoresis patterns, ultraviolet spectra, electron spin resonance spectra, copper content, and immunological similarities were investigated. Tyrosine, tannic acid, g c acid, hydroquinone, catechol, pyrogallol, p-cresol, homocatechol, a-naphthol, -naphthol, p-phenylenediamine, and p-benzoquinone as substrates. No differences in the specificities of these substrates was found. The UV spectra for the laccases under stucfy are shown in Figure 4. Laccase III displays three adsorption bands (280, 405, and 600nm), laccase II shows one band 280nm), and laccase I shows two bands (280 and 405 nm). These data appear to indicate differences in chemical structure. The results of the copper content analysis (10) and two-dimensional electrophoresis also indicate that these fractions are completely different proteins (10), Therefore, we may expect differences in substrate specificities between the three laccase fractions for more lignin-like substrates, yet no difference for some simple phenolic substrates. [Pg.208]


See other pages where Adsorption enzymatic is mentioned: [Pg.152]    [Pg.152]    [Pg.403]    [Pg.300]    [Pg.36]    [Pg.423]    [Pg.295]    [Pg.228]    [Pg.261]    [Pg.98]    [Pg.92]    [Pg.111]    [Pg.167]    [Pg.228]    [Pg.432]    [Pg.454]    [Pg.455]    [Pg.456]    [Pg.459]    [Pg.468]    [Pg.472]    [Pg.518]    [Pg.44]    [Pg.56]    [Pg.57]    [Pg.154]    [Pg.561]    [Pg.13]    [Pg.15]    [Pg.38]    [Pg.120]    [Pg.87]    [Pg.266]    [Pg.585]    [Pg.12]    [Pg.269]   
See also in sourсe #XX -- [ Pg.245 , Pg.391 , Pg.478 , Pg.481 ]




SEARCH



© 2024 chempedia.info