Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption dilute

The treatment here is restricted to the Langmuir or constant separation factor isotherm, single-component adsorption, dilute systems, isothermal behavior, and mass-transfer resistances acting alone. References to extensions are given below. Different isotherms have been considered, and the theory is well understood for general isotherms. [Pg.1524]

DISPOSAL AND STORAGE METHODS solutions of 1% phenol may be recovered by steam stripping, distillation, or carbon adsorption dilute large amounts with flooding quantities of water and feed to sewage organisms cautiously ignite small amounts store in a cool, dry location separate from oxidizers and acute fire hazards. [Pg.829]

We have considered the surface tension behavior of several types of systems, and now it is desirable to discuss in slightly more detail the very important case of aqueous mixtures. If the surface tensions of the separate pure liquids differ appreciably, as in the case of alcohol-water mixtures, then the addition of small amounts of the second component generally results in a marked decrease in surface tension from that of the pure water. The case of ethanol and water is shown in Fig. III-9c. As seen in Section III-5, this effect may be accounted for in terms of selective adsorption of the alcohol at the interface. Dilute aqueous solutions of organic substances can be treated with a semiempirical equation attributed to von Szyszkowski [89,90]... [Pg.67]

A logical division is made for the adsorption of nonelectrolytes according to whether they are in dilute or concentrated solution. In dilute solutions, the treatment is very similar to that for gas adsorption, whereas in concentrated binary mixtures the role of the solvent becomes more explicit. An important class of adsorbed materials, self-assembling monolayers, are briefly reviewed along with an overview of the essential features of polymer adsorption. The adsorption of electrolytes is treated briefly, mainly in terms of the exchange of components in an electrical double layer. [Pg.390]

As discussed in Chapter III, the progression in adsoiptivities along a homologous series can be understood in terms of a constant increment of work of adsorption with each additional CH2 group. This is seen in self-assembling monolayers discussed in Section XI-IB. The film pressure r may be calculated from the adsorption isotherm by means of Eq. XI-7 as modified for adsorption from dilute solution ... [Pg.394]

The Langmuir equation (Eq. XI-4) applies to many systems where adsorption occurs from dilute solution, but some interesting cases of sigmoid isotherms have been reported [54-56]. In several of these studies [54,55] the isotherms... [Pg.397]

The discussion so far has been confined to systems in which the solute species are dilute, so that adsorption was not accompanied by any significant change in the activity of the solvent. In the case of adsorption from binary liquid mixtures, where the complete range of concentration, from pure liquid A to pure liquid B, is available, a more elaborate analysis is needed. The terms solute and solvent are no longer meaningful, but it is nonetheless convenient to cast the equations around one of the components, arbitrarily designated here as component 2. [Pg.406]

It is important to note that the experimentally defined or apparent adsorption no AN 2/, while it gives F, does not give the amount of component 2 in the adsorbed layer Only in dilute solution where N 2 0 and = 1 is this true. The adsorption isotherm, F plotted against N2, is thus a composite isotherm or, as it is sometimes called, the isotherm of composition change. [Pg.407]

Irreversible adsorption discussed in Section XI-3 poses a paradox. Consider, for example, curve 1 of Fig. XI-8, and for a particular system let the equilibrium concentration be 0.025 g/lOO cm, corresponding to a coverage, 6 of about 0.5. If the adsorption is irreversible, no desorption would occur on a small dilution on the other hand, more adsorption would occur if the concentration were increased. If adsorption is possible but not desorption, why does the adsorption stop at 6 = 0.5 instead of continuing up to 0 = 1 Comment on this paradox and on possible explanations. [Pg.421]

Surface heterogeneity may merely be a reflection of different types of chemisorption and chemisorption sites, as in the examples of Figs. XVIII-9 and XVIII-10. The presence of various crystal planes, as in powders, leads to heterogeneous adsorption behavior the effect may vary with particle size, as in the case of O2 on Pd [107]. Heterogeneity may be deliberate many catalysts consist of combinations of active surfaces, such as bimetallic alloys. In this last case, the surface properties may be intermediate between those of the pure metals (but one component may be in surface excess as with any solution) or they may be distinctly different. In this last case, one speaks of various effects ensemble, dilution, ligand, and kinetic (see Ref. 108 for details). [Pg.700]

The chief uses of chromatographic adsorption include (i) resolution of mixtures into their components (Li) purification of substances (including technical products from their contaminants) (iii) determination of the homogeneity of chemical substances (iv) comparison of substances suspected of being identical (v) concentration of materials from dilute solutions (e.g., from a natural source) (vi) quantita tive separation of one or more constituents from a complex mixture and (vii) identi-1 ig- II, 16, 3. gcajjQij and control of technical products. For further details, the student is referred to specialised works on the subject. ... [Pg.158]

Column Si. Size-exclusion chromatography columns are generally the largest column on a process scale. Separation is based strictly on diffusion rates of the molecules inside the gel particles. No proteins or other solutes are adsorbed or otherwise retained owing to adsorption, thus, significant dilution of the sample of volume can occur, particularly for small sample volumes. The volumetric capacity of this type of chromatography is determined by the concentration of the proteins for a given volume of the feed placed on the column. [Pg.50]

The most common hydrophobic adsorbents are activated carbon and siUcahte. The latter is of particular interest since the affinity for water is very low indeed the heat of adsorption is even smaller than the latent heat of vaporization (3). It seems clear that the channel stmcture of siUcahte must inhibit the hydrogen bonding between occluded water molecules, thus enhancing the hydrophobic nature of the adsorbent. As a result, siUcahte has some potential as a selective adsorbent for the separation of alcohols and other organics from dilute aqueous solutions (4). [Pg.252]

Henry s law corresponds physically to the situation in which the adsorbed phase is so dilute that there is neither competition for surface sites nor any significant interaction between adsorbed molecules. At higher concentrations both of these effects become important and the form of the isotherm becomes more complex. The isotherms have been classified into five different types (9) (Eig. 4). Isotherms for a microporous adsorbent are generally of type I the more complex forms are associated with multilayer adsorption and capillary condensation. [Pg.255]

Dilution. In many appHcations, dilution of the flocculant solution before it is mixed with the substrate stream can improve performance (12). The mechanism probably involves getting a more uniform distribution of the polymer molecules. Since the dosage needed to form floes is usually well below the adsorption maximum, a high local concentration is effectively removed from the system at that point, leaving no flocculant for the rest of the particles. A portion of the clarified overflow can be used for dilution so no extra water is added to the process. [Pg.36]

The quantitative relationship between the degree of adsorption at a solution iaterface (7), G—L or L—L, and the lowering of the free-surface energy can be deduced by usiag an approximate form of the Gibbs adsorption isotherm (eq. 9), which is appHcable to dilute biaary solutions where the activity coefficient is unity and the radius of curvature of the surface is not too great ... [Pg.236]

Isolation. Isolation procedures rely primarily on solubiHty, adsorption, and ionic characteristics of the P-lactam antibiotic to separate it from the large number of other components present in the fermentation mixture. The penicillins ate monobasic catboxyHc acids which lend themselves to solvent extraction techniques (154). Pencillin V, because of its improved acid stabiHty over other penicillins, can be precipitated dkecdy from broth filtrates by addition of dilute sulfuric acid (154,156). The separation process for cephalosporin C is more complex because the amphoteric nature of cephalosporin C precludes dkect extraction into organic solvents. This antibiotic is isolated through the use of a combination of ion-exchange and precipitation procedures (157). The use of neutral, macroporous resins such as XAD-2 or XAD-4, allows for a more rapid elimination of impurities in the initial steps of the isolation (158). The isolation procedure for cephamycin C also involves a series of ion exchange treatments (103). [Pg.31]


See other pages where Adsorption dilute is mentioned: [Pg.41]    [Pg.5]    [Pg.78]    [Pg.750]    [Pg.655]    [Pg.575]    [Pg.41]    [Pg.5]    [Pg.78]    [Pg.750]    [Pg.655]    [Pg.575]    [Pg.103]    [Pg.176]    [Pg.390]    [Pg.391]    [Pg.392]    [Pg.404]    [Pg.477]    [Pg.472]    [Pg.128]    [Pg.283]    [Pg.386]    [Pg.381]    [Pg.543]    [Pg.222]    [Pg.473]    [Pg.150]    [Pg.151]    [Pg.153]    [Pg.536]    [Pg.540]    [Pg.218]    [Pg.367]   
See also in sourсe #XX -- [ Pg.84 ]




SEARCH



Adsorption dilute solution

Adsorption from Dilute Aqueous Solutions

Adsorption from Dilute Solution (Particularly Phenols)

Adsorption from dilute solutions

Adsorption of Nonelectrolytes from Dilute Solution

Adsorption of polymers from semi-dilute solutions

Calorimetry Applied to Study Competitive Adsorption from Dilute Solution

Enthalpy Changes Accompanying Competitive Adsorption from Dilute Solution

Individual adsorption isotherms from dilute solutions

Liquid-phase adsorptions from dilute solutions

Organic solutes adsorption, from aqueous dilute solutions

Potential Theory of Adsorption from Dilute Solutions

Solutes adsorption from dilute solutions

The main principles of polymer adsorption from dilute solution

© 2024 chempedia.info