Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorbent clay minerals

Taking into account their usefulness as adsorbants, clay minerals can be successfully hydrophobized with cationic surfactants [2]. Such hydrophobized matrices can be used for the interlayer adsorption of many organic species such as 1-pentanol. [Pg.91]

Surface heterogeneity may be inferred from emission studies such as those studies by de Schrijver and co-workers on P and on R adsorbed on clay minerals [197,198]. In the case of adsorbed pyrene and its derivatives, there is considerable evidence for surface mobility (on clays, metal oxides, sulfides), as from the work of Thomas [199], de Mayo and co-workers [200], Singer [201] and Stahlberg et al. [202]. There has also been evidence for ground-state bimolecular association of adsorbed pyrene [66,203]. The sensitivity of pyrene to the polarity of its environment allows its use as a probe of surface polarity [204,205]. Pyrene or ofter emitters may be used as probes to study the structure of an adsorbate film, as in the case of Triton X-100 on silica [206], sodium dodecyl sulfate at the alumina surface [207] and hexadecyltrimethylammonium chloride adsorbed onto silver electrodes from water and dimethylformamide [208]. In all cases progressive structural changes were concluded to occur with increasing surfactant adsorption. [Pg.418]

Effect on Oxide—Water Interfaces. The adsorption (qv) of ions at clay mineral and rock surfaces is an important step in natural and industrial processes. SiUcates are adsorbed on oxides to a far greater extent than would be predicted from their concentrations (66). This adsorption maximum at a given pH value is independent of ionic strength, and maximum adsorption occurs at a pH value near the piC of orthosiUcate. The pH values of maximum adsorption of weak acid anions and the piC values of their conjugate acids are correlated. This indicates that the presence of both the acid and its conjugate base is required for adsorption. The adsorption of sihcate species is far greater at lower pH than simple acid—base equihbria would predict. [Pg.7]

Because clays (rocks) usually contain more than one mineral and the various clay minerals differ in chemical and physical properties, the term clay may signify entirely different things to different clay users. Whereas the geologist views clay as a raw material for shale, the pedologist as a dynamic system to support plant life, and the ceramist as a body to be processed in preparation for vitrification, the chemist and technologist view clay as a catalyst, adsorbent, filler, coater, or source of aluminum or lithium compounds, etc. [Pg.193]

Barrer, Xeolites and Clay Minerals as Adsorbents and Molecular Sieves, Academic Press, New York, 1978. [Pg.1496]

In clay mineral crystals, atoms having different valences commonly will be positioned within the sheets of the structure to create a negative potential at the crystal surface. In that case, a cation is adsorbed on the surface. These adsorbed cations are called exchangeable cations because they may chemically trade places with other cations when the clay crystal is suspended in water. In addition, ions may also be adsorbed on the clay crystal edges and exchange with other ions in the water. [Pg.60]

Bound in minerals such as uraninite, pitchblende, coffinite, etc. fixed as a replacement ion for Y, Ce, Zr, Th, Ca, and Ba in other, particularly accessory minerals and adsorbed as ion on clay minerals, hydrous iron oxides, etc. [Pg.71]

The effectiveness of nonionic polymers as migrating clay stabilizers and the geometry of the adsorbed polymer - mineral complex may be substantially different for the nonionic polymers and the quaternary ammonium salt polymers. The observation that some quaternary ammonium salt polymers, while effective swelling clay stabilizers, are ineffective mineral fines stabilizers is consistent with a different adsorbed polymer - particle complex geometry on different mineral surfaces. [Pg.222]

The clay mineral montmorillonite, which is often used in different prebiotic syntheses, is probably now the most important mineral for experiments on prebiotic chemistry. It has shown its abilities in the area of simulation experiments on the formation of primitive cellular compartments montmorillonite accelerates the spontaneous conversion of fatty acid micelles to vesicles. Clay particles are often incorporated into the vesicle, just as is RNA, which is adsorbed at such clay particles. If the vesicles have been formed, they can continue to grow if fatty acids are fed to them via micelles. If the vesicles are pressed through 100 nm pore filters, they divide without dilution of their contents. [Pg.271]

Since most trace elements in soils are at parts per million levels, a separate compound may be not formed. Most likely, trace amounts of these trace elements and their compounds are adsorbed on the surfaces of clay minerals and various crystalline and amorphous Fe/Mn/Al oxides and hydroxides. Curtin and Smillie (1983) reported that the solubilities of Mn2+ and Zn2+ in limed soils were not consistent with the solubilities of any... [Pg.101]

Exchangeable ions (EXC), sometimes including ions nonspecifically adsorbed and specifically absorbed on the surface of various soil components, such as carbonate, organic matter, Fe, Mn, Si, and Al oxides, and clay minerals. This part is controlled by adsorption-desorption processes. [Pg.108]

Kowalska M, Gtiler H, Cocke DL (1994) Interactions of clay minerals with organic pollutants. Sci Total Environ 141 223-240 Kukkadapu RK, Boyd SA (1995) Tetramethylphosphonium-smectite and tetramethylammonium-smectite as adsorbents of aromatic and chlorinated hydrocarbons - effect of water on adsorption efficiency. Clays Clay Miner 43 318-323... [Pg.171]

Mortland MM, Shaobai S, Boyd SA (1986) Clay-organic complexes as adsorbents for phenol and chlorophenols. Clays Clay Miner 34 581-595... [Pg.172]

Hydrolysis reactions occur by nucleophilic attack at a carbon single bond, involving either the water molecule directly or the hydronium or hydroxyl ion. The most favorable conditions for hydrolysis, e.g. acidic or alkaline solutions, depend on the nature of the bond which is to be cleaved. Mineral surfaces that have Bronsted acidity have been shown to catalyze hydrolysis reactions. Examples of hydrolysis reactions which may be catalyzed by the surfaces of minerals in soils include peptide bond formation by amino acids which are adsorbed on clay mineral surfaces and the degradation of pesticides (see Chapter 22). [Pg.15]

In view of the problems associated with the expanding 2 1 clays, the smectites and vermiculites, it seemed desirable to use a different clay mineral system, one in which the interactions of surface adsorbed water are more easily studied. An obvious candidate is the hydrated form of halloysite, but studies of this mineral have shown that halloysites also suffer from an equally intractable set of difficulties (JO.). These are principally the poor crystallinity, the necessity to maintain the clay in liquid water in order to prevent loss of the surface adsorbed (intercalated) water, and the highly variable morphology of the crystallites. It seemed to us preferable to start with a chemically pure, well-crystallized, and well-known clay mineral (kaolinite) and to increase the normally small surface area by inserting water molecules between the layers through chemical treatment. Thus, the water would be in contact with both surfaces of every clay layer in the crystallites resulting in an effective surface area for water adsorption of approximately 1000 tor g. The synthetic kaolinite hydrates that resulted from this work are nearly ideal materials for studies of water adsorbed on silicate surfaces. [Pg.43]

An understanding of much of aqueous geochemistry requires an accurate description of the water-mineral interface. Water molecules in contact with> or close to, the silicate surface are in a different environment than molecules in bulk water, and it is generally agreed that these adsorbed water molecules have different properties than bulk water. Because this interfacial contact is so important, the adsorbed water has been extensively studied. Specifically, two major questions have been examined 1) how do the properties of surface adsorbed water differ from bulk water, and 2) to what distance is water perturbed by the silicate surface These are difficult questions to answer because the interfacial region normally is a very small portion of the water-mineral system. To increase the proportion of surface to bulk, the expanding clay minerals, with their large specific surface areas, have proved to be useful experimental materials. [Pg.51]

Based on the study of expanding clay minerals, two models of water adsorbed on silicate surfaces have been proposed. One states that only a few layers (<5) of water are perturbed by the silicate surface, the other concludes that many layers (perhaps 10 times that number) are involved. The complexity of the interactions which occur between water molecules, surface adsorbed ions, and the atoms of the silicate mineral make it very difficult to unequivocally determine which is the correct view. Both models agree that the first few water layers are most perturbed, yet neither has presented a clear picture of the structure of the adsorbed water, nor is much known about the bonding of the water molecules to the silicate surface and to each other. [Pg.51]

Our approach has been to study a very simple clay-water system in which the majority of the water present is adsorbed on the clay surfaces. By appropriate chemical treatment, the clay mineral kao-linite will expand and incorporate water molecules between the layers, yielding an effective surface area of approximately 1000 m2 g . Synthetic kaolinite hydrates have several advantages compared to the expanding clays, the smectites and vermiculites they have very few impurity ions in their structure, few, if any, interlayer cations, the structure of the surfaces is reasonably well known, and the majority of the water present is directly adsorbed on the kaolinite surfaces. [Pg.51]


See other pages where Adsorbent clay minerals is mentioned: [Pg.189]    [Pg.191]    [Pg.205]    [Pg.205]    [Pg.168]    [Pg.70]    [Pg.81]    [Pg.261]    [Pg.60]    [Pg.12]    [Pg.411]    [Pg.538]    [Pg.538]    [Pg.544]    [Pg.144]    [Pg.96]    [Pg.176]    [Pg.196]    [Pg.137]    [Pg.237]    [Pg.245]    [Pg.16]    [Pg.18]    [Pg.22]    [Pg.188]    [Pg.536]    [Pg.1165]    [Pg.171]    [Pg.116]    [Pg.3]    [Pg.40]    [Pg.50]   
See also in sourсe #XX -- [ Pg.879 ]




SEARCH



Clay adsorbent

Clay minerals

Clay, adsorbability

© 2024 chempedia.info