Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adhesive moisture content

Plywood requirements—includes wood species used, synthetic repair requirements, veneer grades, veneer layers and thicknesses, panel grades with respect to end-use, adhesive bond requirements, panel constmetion and workmanship, scarf and finger-jointed panels, dimensional tolerances, moisture content, and packaging and loading... [Pg.384]

Cyanoacrylate adhesives (Super-Glues) are materials which rapidly polymerize at room temperature. The standard monomer for a cyanoacrylate adhesive is ethyl 2-cyanoacrylate [7085-85-0], which readily undergoes anionic polymerization. Very rapid cure of these materials has made them widely used in the electronics industry for speaker magnet mounting, as weU as for wire tacking and other apphcations requiring rapid assembly. Anionic polymerization of a cyanoacrylate adhesive is normally initiated by water. Therefore, atmospheric humidity or the surface moisture content must be at a certain level for polymerization to take place. These adhesives are not cross-linked as are the surface-activated acryhcs. Rather, the cyanoacrylate material is a thermoplastic, and thus, the adhesives typically have poor temperature resistance. [Pg.233]

Interlayer moisture is one of the important controls for PVB-to-glass adhesion of current formulations (although moisture-insensitive formulations are being developed). The moisture content equiUbrates with the relative humidity to which the interlayer is exposed and thus is variable. Prior to lamination, interlayer moisture content is measured by one of three methods. The most rapid is by air absorption using a spectrophotometric technique to determine a... [Pg.526]

Moisture. The presence of water in a filler is not usually beneficial. Most fillers added to adhesives have a moisture content lower than 1 wt%. Only precipitated silicas and sepiolite contain about 5-10 wt% moisture. For some applications, fillers must be completely dried to exhibit adequate performance. Moisture absorbed on the surface of fillers impacts the rate and extent of curing of rubber base adhesives. [Pg.631]

For all its benefits, the water/isocyanate reaction can be troublesome as well. All raw materials that go into a one-component moisture-cured adhesive must have very low moisture content, usually less than 0.05% water. If higher water levels are present, the adhesive can start curing in the reactor, causing an increase in viscosity, or, in extreme cases, gelation. [Pg.764]

Phase C corresponds to a decreasing rate of temperature rise in the board core at about 100°C. It is followed by stabilization of the temperature, namely phase D. This latter being due to decrease of the steam gradient due to moisture escape from the board edges, and the increase and decrease of the wood wetting heat, respectively, near the board surface and in the core layer. Phase E, a new slow increase in temperature is observable in standard moisture content boards [225] but is absent at high moisture content (due to the maintenance of some moisture in the core layer), contrary to the case of traditional moisture content adhesives, as shown in Fig. 8. [Pg.1092]

Clarke, M., Steiner, P.R. and Anderson, A.W., United States patent USP 4,824,896. Phenol formaldehyde adhesives for bonding wood pieces of high moisture content and composite board and veneers bonded with such adhesive. Assigned to the inventors, 1989. [Pg.1099]

Even the void fraction together with particle size distribution does not provide all of the necessary information on the kind of flow. The mutual forces between distinct particles depend not only on the distance between the particles but also on the surface properties of the particles. The strength of the attractive forces between particles depends on conditions. For instance, the moisture content of the solid is essential for determining the attractiv c forces between particles, especially for hydroscopic materials such as wood. Airflow between particles usually tends to separate particles, whereas the surface forces, adhesion forces, tend to bring them together. [Pg.1323]

Granulated fly ash [6] can substitute for Portland cement to an extent of 40% to 60%. Fly ash is used in granulated form and has a moisture content around 10% to 20%. The formulation can be used for cementing oil and gas wells within a temperature range of 20° to 250° C. The solution has reduced water absorption and increased sedimentation stability. A formulation [1388] is shown in Table 18-2. Hydrosil (Aerosil) is used to increase the adhesion of the produced cement rock to the casing string. It also reduces the density and water absorption. [Pg.280]

The original applications of NIR were in the food and agricultural industries where the routine determination of the moisture content of foodstuffs, the protein content of grain and the fat content of edible oils and meats at the 1% level and above are typical examples. The range of industries now using the technique is much wider and includes pharmaceutical, polymer, adhesives and textile companies. The first in particular are employing NIR spectrometry for the quality control of raw materials and intermediates and to check on actives and excipients in formulated products. Figure 9.26(b) demonstrates that even subtle differences between the NIR spectra of enantiomers can be detected. [Pg.395]

The same approach is employed to describe shear-induced transport of soot particles. Based on limited amount of experimental information for such phenomena in the literature we have established a flow cell where soot entrainment from the surface of preloaded filters from the engine exhaust can be studied. Preliminary experiments at ambient conditions reveal that no soot entrainment is observed up to relevant shear rates at the entrance of DPFs. We attribute this to the moisture content in ambient conditions of the soot deposits that due to capillary condensation increases adhesive forces between the particles. In the future experiments at high temperatures are planned to evaluate experimentally the shear-entrained fluxes for soot and ash deposits. [Pg.250]

Volatile substances in the rubber or compounding ingredients or moisture can cause porosity. Insufficient stock of rubber in the mould and under cure also cause porosity. To prevent this defect from occurring, avoid use of raw materials containing volatile materials, test all raw materials for moisture content, allow the solvents or adhesives to dry up completely, check up the volume and shape of the finished product and increase curing pressure if feasible. [Pg.185]

Although studies on potato structure had been carried out previously using conventional SEM, van Marie et al [70] used cryo-SEM to advantage in this high moisture material. The fracture planes of cooked and uncooked samples were used to help characterize cell wall adhesion in the four potato cultivars. In particular, differences in cell wall contact area and surface detail were used to explain the mealy versus firm textural attributes in the cultivars. By determining the parameters which contributed to the texture of potatoes, processing conditions and selection of suitable raw materials could be facilitated. Such information would be difficult to obtain with conventional, chemically fixed material due to the high moisture content and the inability of standard chemical fixation to retain carbohydrate-based structures. [Pg.266]

Paintability is generally not a problem under dry normal conditions. Unusually high relative humidity conditions can affect adhesion of the paint film or cause chemical crystal blooming on the paint surface due to the increased moisture content of the wood. Natural or clear finishes are generally not used for treated wood because the chemicals may cause darkening or irregular staining. [Pg.104]


See other pages where Adhesive moisture content is mentioned: [Pg.381]    [Pg.392]    [Pg.234]    [Pg.525]    [Pg.527]    [Pg.518]    [Pg.17]    [Pg.345]    [Pg.453]    [Pg.493]    [Pg.634]    [Pg.892]    [Pg.1060]    [Pg.1063]    [Pg.1065]    [Pg.1071]    [Pg.1077]    [Pg.1085]    [Pg.1088]    [Pg.1091]    [Pg.109]    [Pg.139]    [Pg.149]    [Pg.169]    [Pg.307]    [Pg.355]    [Pg.232]    [Pg.381]    [Pg.392]    [Pg.525]    [Pg.527]    [Pg.646]    [Pg.193]    [Pg.165]   
See also in sourсe #XX -- [ Pg.259 ]




SEARCH



© 2024 chempedia.info