Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition reactions alkene terminator

The types of compounds that can be polymerized readily by the radical-chain mechanism are the same types that easily undergo free-radical addition reactions. Alkenes with aryl, ester, nitrile, or halide substituent groups that can stabilize the intermediate radical are most susceptible to radical polymerization. Terminal alkenes are generally more reactive toward radical-chain polymerization than more highly substituted isomers. The dominant mode of addition in radical-chain polymerization is head-to-tail. The reason for this orientation is that each successive addition of monomer takes place in such a way that the most stable possible radical intermediate is formed. For example, the addition to styrene occurs to give the phenyl-substituted radical to acrylonitrile, to give the cyano-substituted radical ... [Pg.461]

Addition Reactions. Treating terminal alkynes with benzene-selenol in the presence of Pd(OAc)2 and pyridine results in highly regioselective hydroselenation of the triple bond and provides the corresponding 2-phenylselenyl-substituted alkene as the exclusive product of reaction (eq 79). ... [Pg.468]

While testing two different catalysts, Tanaka found that cationic rhodium in a binary system (cationic Rh(I)/H8-binap) is effective in chemo- and regioselective addition reactions of terminal alkynes with acetylenedicarboxylate to form 1,2,3,4-tetra-substituted benzenes with excellent yield of 99% [9, 44, 45]. It is also important to note that this reaction is tolerant to a large number of functional groups, including alkenes, alkyl halides, and esters. Although cationic iridium complex Ir(I) did not give a positive result in the cycloaddition reactions, the authors showed that the catalytic system with neutral Ir(I) can facilitate cycloaromatization of dimethyl acetylenedicarboxylate and terminal alkynes [45]. [Pg.10]

How to control the regioselectivity In most of the H-P(O) bond addition reactions to terminal alkynes and alkenes, the branched products are more valuable since the linear products can be synthesized by classical radical processes. Some of the metal-catalyzed processes are branched-selective or allow regiochemical flexibihty by tuning the procedure. In view of problematic separation of the isomers, however, we still have a long way to go before we perfect the regiochemical control for practical use. [Pg.199]

Terminal alkynes undergo the above-mentioned substitution reaction with aryl and alkenyl groups to form arylalkynes and enynes in the presence of Cul as described in Section 1.1.2.1. In addition, the insertion of terminal alkynes also takes place in the absence of Cul, and the alkenylpalladium complex 362 is formed as an intermediate, which cannot terminate by itself and must undergo further reactions such as alkene insertion or anion capture. These reactions of terminal alkynes are also treated in this section. [Pg.179]

We have already discussed one important chemical property of alkynes the acidity of acetylene and terminal alkynes In the remaining sections of this chapter several other reactions of alkynes will be explored Most of them will be similar to reactions of alkenes Like alkenes alkynes undergo addition reactions We 11 begin with a reaction familiar to us from our study of alkenes namely catalytic hydrogenation... [Pg.374]

Hydroformylation (Section 17 5) An industrial process for prepanng aldehydes (RCH2CH2CH=0) by the reaction of terminal alkenes (RCH=CH2) with carbon monoxide Hydrogenation (Section 6 1) Addition of H2 to a multiple bond... [Pg.1286]

The chemistry of alkynes is dominated by electrophilic addition reactions, similar to those of alkenes. Alkynes react with HBr and HC1 to yield vinylic halides and with Br2 and Cl2 to yield 1,2-dihalides (vicinal dihalides). Alkynes can be hydrated by reaction with aqueous sulfuric acid in the presence of mercury(ll) catalyst. The reaction leads to an intermediate enol that immediately isomerizes to yield a ketone tautomer. Since the addition reaction occurs with Markovnikov regiochemistry, a methyl ketone is produced from a terminal alkyne. Alternatively, hydroboration/oxidation of a terminal alkyne yields an aldehyde. [Pg.279]

Triple bonds can be monohydroborated to give vinylic boranes, which can be reduced with carboxylic acids to cis alkenes or oxidized and hydrolyzed to aldehydes or ketones. Terminal alkynes give aldehydes by this method, in contrast to the mercuric or acid-catalyzed addition of water discussed at 15-4. However, terminal alkynes give vinylic boranes (and hence aldehydes) only when treated with a hindered borane such as 47, 48, or catecholborane (p. 798)," or with BHBr2—SMe2. The reaction between terminal alkynes and BH3 produces 1,1-... [Pg.1015]

There are, however, serious problems that must be overcome in the application of this reaction to synthesis. The product is a new carbocation that can react further. Repetitive addition to alkene molecules leads to polymerization. Indeed, this is the mechanism of acid-catalyzed polymerization of alkenes. There is also the possibility of rearrangement. A key requirement for adapting the reaction of carbocations with alkenes to the synthesis of small molecules is control of the reactivity of the newly formed carbocation intermediate. Synthetically useful carbocation-alkene reactions require a suitable termination step. We have already encountered one successful strategy in the reaction of alkenyl and allylic silanes and stannanes with electrophilic carbon (see Chapter 9). In those reactions, the silyl or stannyl substituent is eliminated and a stable alkene is formed. The increased reactivity of the silyl- and stannyl-substituted alkenes is also favorable to the synthetic utility of carbocation-alkene reactions because the reactants are more nucleophilic than the product alkenes. [Pg.862]

A wide range of catalysts is now known that will bring about B H addition to simple terminal alkenes. For group 9 complexes, catalytic activity follows the order [(dppe)Rh (nbd)]+ > [Rh(PPh3)3Cl] > [(COD)Ir(PCy3)(C5H5N)]+ (where dppe = 2-bis(diphenylphosphino) ethane and nbd = norbornadiene).19 Different facial selectivity is found for catalytic hydroboration reactions of these compounds with chiral alkenes (Equation (1)). Thus, [(dppe)Rh(nbd)]+ gives... [Pg.267]

The uncatalyzed hydroboration-oxidation of an alkene usually affords the //-Markovnikov product while the catalyzed version can be induced to produce either Markovnikov or /z/z-Markovnikov products. The regioselectivity obtained with a catalyst has been shown to depend on the ligands attached to the metal and also on the steric and electronic properties of the reacting alkene.69 In the case of monosubstituted alkenes (except for vinylarenes), the anti-Markovnikov alcohol is obtained as the major product in either the presence or absence of a metal catalyst. However, the difference is that the metal-catalyzed reaction with catecholborane proceeds to completion within minutes at room temperature, while extended heating at 90 °C is required for the uncatalyzed transformation.60 It should be noted that there is a reversal of regioselectivity from Markovnikov B-H addition in unfunctionalized terminal olefins to the anti-Markovnikov manner in monosubstituted perfluoroalkenes, both in the achiral and chiral versions.70,71... [Pg.843]

Disubstituted alkynes and terminal alkynes form E-dibromoalkenes [4] when the tribromide is formed in situ in an essentially basic medium, an addition reaction followed by elimination of hydrogen bromide results in the conversion of terminal alkynes into the 1-bromoalkynes [5]. When the addition reaction is conducted in methanol, l,l-dibromo-2,2-dimethoxyalkanes are produced, in addition to the 1,2-dibromoalkenes [6], The dimethoxy compounds probably result from the initial intermediate formation of bromomethoxyalkenes. Under similar conditions, alkenes yield methoxy bromo compounds [7]. [Pg.49]

The addition reaction of allyltriorganosilanes to 1-alkenes in the presence of anhydrous aluminum chloride as catalyst at room temperature gives regiospecific allylsilylated products, in which the silyl group adds to the terminal carbon and the allyl group adds to the inner carbon of the double bond [Eq. (3)]. Compared with the starting alkenes, the products of the allylsilylation reaction possess two additional carbon atoms in addition to a (triorganosilyl)methyl branch at the carbon (3 to the double bond. [Pg.43]

The addition to alkenes of radicals derived from an a-nitroketone is also catalysed by manganese(III) [30]. During the reaction between a-nitroacetophenone 8 and m-but-2-ene, the stereochemical relationship between the methyl substituents is not preserved. The process terminates with the formation of a nitrone. A related process will generate nitromethyl radicals from nitromethane and these add to benzene to give phenyinitromethane [31],... [Pg.308]

In many of these cases, the nucleophile is a C=C double bond (usually an alkenic group and less frequently an aromatic group). Alkenic oxime mesylates enable intramolecular cyclization by an electrophihc addition of the double bond to the electrophilic intermediate. These reactions are terminated by a proton loss. [Pg.420]

Rates of radical additions to alkenes are controlled mainly by the enthalpy of the reaction, which is the origin of regioselectivity in additions to unsymmetrical systems, with polar effects superimposed when there is a favorable match between the electrophilic or nucleophilic character of the radical and that of the radico-phile. For example, in the addition of an alkyl radical to methyl acrylate (2), the nucleophilic alkyl radical interacts favorably with the resonance structure 3. Polar effects are apparent in the representative rate constants shown in Figure 4.14 for additions of carbon radicals to terminal alkenes. Addition of the electron-deficient or electrophilic rert-butoxycarbonylmethyl radical to the electron-deficient molecule methyl acrylate is 10 times as fast as addition of... [Pg.148]


See other pages where Addition reactions alkene terminator is mentioned: [Pg.258]    [Pg.393]    [Pg.174]    [Pg.178]    [Pg.405]    [Pg.224]    [Pg.405]    [Pg.111]    [Pg.955]    [Pg.100]    [Pg.135]    [Pg.955]    [Pg.30]    [Pg.67]    [Pg.353]    [Pg.153]    [Pg.625]    [Pg.633]    [Pg.222]    [Pg.734]    [Pg.227]    [Pg.469]    [Pg.497]    [Pg.174]    [Pg.102]    [Pg.97]    [Pg.178]    [Pg.43]    [Pg.48]    [Pg.102]    [Pg.307]    [Pg.657]   
See also in sourсe #XX -- [ Pg.459 , Pg.460 ]




SEARCH



Addition reactions alkenes

Reaction terminating

Reaction, terminal

Terminal alkene

Termination reaction

© 2024 chempedia.info