Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron deficient molecules

There are a number of general exceptions to the octet rule electron deficient compounds in which the central atom has an incomplete octet, free radicals (with an unpaired electron), molecules whose central atom is surrounded by more than eight electrons (an expanded octet) and compounds of hydrogen and the transition metals (d-block) and lanthanoids (f-block). [Pg.117]

Also an atom, molecule, or ion that is electron deficient and which can form a co-ordinate link with an electron donor. Thus in the complex ion [Co(NH3)eP the cobalt(Ill) ion is an acceptor and the ammonia the electron donor. t-acceptors are molecules or atoms which accept electrons into n, p or d orbitals. [Pg.10]

Boranes are typical species with electron-deficient bonds, where a chemical bond has more centers than electrons. The smallest molecule showing this property is diborane. Each of the two B-H-B bonds (shown in Figure 2-60a) contains only two electrons, while the molecular orbital extends over three atoms. A correct representation has to represent the delocalization of the two electrons over three atom centers as shown in Figure 2-60b. Figure 2-60c shows another type of electron-deficient bond. In boron cage compounds, boron-boron bonds share their electron pair with the unoccupied atom orbital of a third boron atom [86]. These types of bonds cannot be accommodated in a single VB model of two-electron/ two-centered bonds. [Pg.68]

A major difficulty with the Diels-Alder reaction is its sensitivity to sterical hindrance. Tri- and tetrasubstituted olefins or dienes with bulky substituents at the terminal carbons react only very slowly. Therefore bicyclic compounds with polar reactions are more suitable for such target molecules, e.g. steroids. There exist, however, several exceptions, e. g. a reaction of a tetrasubstituted alkene with a 1,1-disubstituted diene to produce a cyclohexene intermediate containing three contiguous quaternary carbon atoms (S. Danishefsky, 1979). This reaction was assisted by large polarity differences between the electron rich diene and the electron deficient ene component. [Pg.86]

Electrophile Addition Reactions. The addition of electrophilic (acidic) reagents HZ to propylene involves two steps. The first is the slow transfer of the hydrogen ion (proton) from one base to another, ie, from Z to the propylene double bond, to form a carbocation. The second is a rapid combination of the carbocation with the base, Z . The electrophile is not necessarily limited to a Lowry-Briiinsted acid, which has a proton to transfer, but can be any electron-deficient molecule (Lewis acid). [Pg.124]

Localized Bonds. Because boron hydrides have more valence orbitals than valence electrons, they have often been called electron-deficient molecules. This electron deficiency is partiy responsible for the great interest surrounding borane chemistry and molecular stmcture. The stmcture of even the simplest boron hydride, diborane(6) [19287-45-7] 2 6 sufficientiy challenging that it was debated for years before finally being resolved (57) in favor of the hydrogen bridged stmcture shown. [Pg.233]

Charge-Transfer Forces. An electron-rich atom, or orbital, can form a bond with an electron-deficient atom. Typical examples are lone pairs of electrons, eg, in nitrogen atoms regularly found in dyes and protein and polyamide fibers, or TT-orbitals as found in the complex planar dye molecules, forming a bond with an electron-deficient hydrogen or similar atom, eg, —0 . These forces play a significant role in dye attraction. [Pg.350]

An interesting intermediate 30 was proposed to result from the sequential addition of pyridine to tetrachlorocyclopropene (31). Compound 30 represents an alkyl nitrogen ylide with two 1-chloroalkyl pyridinium moieties in the same molecule. Pyridines with electron-withdrawing groups and heterocycles with an electron-deficient nitrogen, for example, pyridine-3-carbaldehyde or quinoline, react with 31 to yield the corresponding mono-substituted products 32a and 32b (83JOC2629) (Scheme 8). [Pg.188]

Yet another kind of alkene addition is the reaction of a carbene with an alkene to yield a cyclopropane. A carbene, R2C , is a neutral molecule containing a divalent carbon with only six electrons in its valence shell. It is therefore highly reactive and is generated only as a reaction intermediate, rather than as an isolable molecule. Because they re electron-deficient, carbenes behave as electrophiles and react with nucieophiiic C=C bonds. The reaction occurs in a single step without intermediates. [Pg.227]

Exceptions to the Octet Rule Electron-Deficient Molecules... [Pg.172]

This review will endeavor to outline some of the advantages of Raman Spectroscopy and so stimulate interest among workers in the field of surface chemistry to utilize Raman Spectroscopy in the study of surface phenomena. Up to the present time, most of the work has been directed to adsorption on oxide surfaces such as silicas and aluminas. An examination of the spectrum of a molecule adsorbed on such a surface may reveal information as to whether the molecule is physically or chemically adsorbed and whether the adsorption site is a Lewis acid site (an electron deficient site which can accept electrons from the adsorbate molecule) or a Bronsted acid site (a site which can donate a proton to an adsorbate molecule). A specific example of a surface having both Lewis and Bronsted acid sites is provided by silica-aluminas which are used as cracking catalysts. [Pg.294]

Lewis s theory of the chemical bond was brilliant, but it was little more than guesswork inspired by insight. Lewis had no way of knowing why an electron pair was so important for the formation of covalent bonds. Valence-bond theory explained the importance of the electron pair in terms of spin-pairing but it could not explain the properties of some molecules. Molecular orbital theory, which is also based on quantum mechanics and was introduced in the late 1920s by Mul-liken and Hund, has proved to be the most successful theory of the chemical bond it overcomes all the deficiencies of Lewis s theory and is easier to use in calculations than valence-bond theory. [Pg.238]

The development of molecular orbital theory (MO theory) in the late 1920s overcame these difficulties. It explains why the electron pair is so important for bond formation and predicts that oxygen is paramagnetic. It accommodates electron-deficient compounds such as the boranes just as naturally as it deals with methane and water. Furthermore, molecular orbital theory can be extended to account for the structures and properties of metals and semiconductors. It can also be used to account for the electronic spectra of molecules, which arise when an electron makes a transition from an occupied molecular orbital to a vacant molecular orbital. [Pg.239]

The boranes are electron-deficient compounds (Section 3.8) we cannot write valid Lewis structures for them, because too few electrons are available. For instance, there are 8 atoms in diborane, so we need at least 7 bonds however, there are only 12 valence electrons, and so we can form at most 6 electron-pair bonds. In molecular orbital theory, these electron pairs are regarded as delocalized over the entire molecule, and their bonding power is shared by several atoms. In diborane, for instance, a single electron pair is delocalized over a B—H—B unit. It binds all three atoms together with bond order of 4 for each of the B—H bridging bonds. The molecule has two such bridging three-center bonds (9). [Pg.723]


See other pages where Electron deficient molecules is mentioned: [Pg.159]    [Pg.25]    [Pg.99]    [Pg.450]    [Pg.417]    [Pg.2411]    [Pg.152]    [Pg.91]    [Pg.85]    [Pg.181]    [Pg.281]    [Pg.79]    [Pg.265]    [Pg.134]    [Pg.276]    [Pg.64]    [Pg.21]    [Pg.309]    [Pg.1038]    [Pg.324]    [Pg.19]    [Pg.151]    [Pg.198]    [Pg.195]    [Pg.2]    [Pg.686]    [Pg.237]    [Pg.69]    [Pg.302]    [Pg.459]    [Pg.22]    [Pg.329]    [Pg.248]    [Pg.741]    [Pg.949]    [Pg.1012]   
See also in sourсe #XX -- [ Pg.125 , Pg.126 ]




SEARCH



Beryllium electron-deficient molecules

Boron electron-deficient molecules

Electron deficiency

Electron deficient molecules Diborane

Electron-deficient atoms/molecules

INDEX Electron-deficient molecules

Lewis structure electron-deficient molecules

Molecular shape electron-deficient molecules

Molecule electronic

The first electron deficient molecule, diborane

© 2024 chempedia.info