Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatics acylation acyl chlorides

Acyl chlorides, Aromatic hydrocarbons EfFenberger, F. et al., Angew. Chem. (Intern. Ed.), 1972, 11, 300 Addition of catalytic amounts (1%) of the acid (stronger even than perchloric acid) to mixtures of acyl chlorides and aromatic hydrocarbons causes more or less violent evolution of hydrogen chloride, depending on the reactivity of the Friedel-Crafts components. [Pg.151]

Trifluoromethanesulfonic acid, Acyl chlorides, Aromatic hydrocarbons, 0375 Trimethyl phosphate, 1318... [Pg.82]

Gattermann-Koch reaction Formylation of an aromatic hydrocarbon to yield the corresponding aldehyde by treatment with CO, HCl and AICI3 at atmospheric pressure CuCl is also required. The reaction resembles a Friedel-Crafts acylation since methanoyl chloride, HCOCl, is probably involved. [Pg.187]

TTie true ketones, in which the >CO group is in the side chain, the most common examples being acetophenone or methyl phenyl ketone, C HjCOCH, and benzophenone or diphenyl ketone, C HjCOC(Hj. These ketones are usually prepared by a modification of the Friedel-Crafts reaction, an aromatic hydrocarbon being treated with an acyl chloride (either aliphatic or aromatic) in the presence of aluminium chloride. Thus benzene reacts with acetyl chloride... [Pg.254]

Acyl halides, both aliphatic and aromatic, react with the sodium derivative, but the product depends largely on the solvent used. Thus acetyl chloride reacts with the sodium derivative (E) suspended in ether to give mainly the C-derivative (t) and in pyridine solution to give chiefly the O-derivative (2). These isomeric compounds can be readily distinguished, because the C-derivative (1) can still by enolisation act as a weak acid and is therefore... [Pg.270]

Acyl cations (acylium ions) generated by treating an acyl chloride or acid anhydride with aluminum chloride attack aromatic rings to yield ketones The arene must be at least as reactive as a halobenzene Acyl cations are relatively stable and do not re arrange... [Pg.510]

Friedel-Crafts acylation of aromatic compounds (Section 12 7) Acyl chlorides and carboxylic acid anhydrides acylate aromatic rings in the presence of alumi num chloride The reaction is electrophil ic aromatic substitution in which acylium ions are generated and attack the ring... [Pg.710]

One of the most useful reac tions of acyl chlorides was presented in Section 12 7 Friedel-Crafts acylation of aromatic rings takes place when arenes are treated with acyl chlorides in the presence of aluminum chloride... [Pg.838]

Fnedel-Crafts acylation In the presence of alumi num chloride acyl chlorides and carboxylic acid an hydrides acylate the aromatic ring of phenols... [Pg.1004]

Acylatmg agents such as acyl chlorides and carboxylic acid anhydrides can react with phenols either at the aromatic ring (C acylation) or at the hydroxyl oxygen (O acylation)... [Pg.1004]

Friedel-Crafts acylation (Section 12 7) An electrophilic aro matic substitution in which an aromatic compound reacts with an acyl chloride or a carboxylic acid anhydride in the presence of aluminum chlonde An acyl group becomes bonded to the nng... [Pg.1284]

Ketone Synthesis. In the Friedel-Crafts ketone synthesis, an acyl group is iatroduced iato the aromatic nucleus by an acylating agent such as an acyl haUde, acid anhydride, ester, or the acid itself. Ketenes, amides, and nittiles also may be used aluminum chloride and boron ttitiuotide are the most common catalysts (see Ketones). [Pg.557]

Preparation of Arylcarboxylic Acids and Derivatives. The general Friedel-Crafts acylation principle can be successfully appHed to the preparation of aromatic carboxyUc acids. Carbonyl haUdes (phosgene, carbonyl chloride fluoride, or carbonyl fluoride) [353-50-4] are diacyl haUdes of carbonic acid. Phosgene [75-44-5] or oxalyl chloride [79-37-8] react with aromatic hydrocarbons to give aroyl chlorides that yield acids on hydrolysis (133) ... [Pg.560]

Ketone formation can also be avoided if one of the functional acyl halogens ia phosgene is blocked. Carbamyl chlorides, readily obtained by the reaction of phosgene with ammonia or amines, are suitable reagents for the preparation of amides ia direct Friedel-Crafts acylation of aromatics. The resulting amides can be hydroly2ed to the corresponding acids (134) ... [Pg.560]

Sulfonylation. Under Friedel-Crafts reaction conditions, sulfonyl haUdes and sulfonic acid anhydrides sulfonylate aromatics (139), a reaction that can be considered the analogue of the related acylation with acyl haUdes and anhydrides. The products are sulfones. Sulfonyl chlorides are the most frequently used reagents, although the bromides and fluorides also react ... [Pg.560]

Substitution at the Alcohol Group. Acylation of the OH group by acylating agents such as acid chlorides or anhydrides is one of the important high yielding substitution reactions at the OH group of lactic acid and its functional derivatives. AUphatic, aromatic, and other substituted derivatives can be produced. [Pg.513]

As a dibasic acid, malic acid forms the usual salts, esters, amides, and acyl chlorides. Monoesters can be prepared easily by refluxing malic acid, an alcohol, and boron trifluoride as a catalyst (9). With polyhydric alcohols and polycarboxyUc aromatic acids, malic acid yields alkyd polyester resins (10) (see Alcohols, polyhydric Alkyd resins). Complete esterification results from the reaction of the diester of maUc acid with an acid chloride, eg, acetyl or stearoyl chloride (11). [Pg.521]

PoIysuIfonyIa.tlon, The polysulfonylation route to aromatic sulfone polymers was developed independendy by Minnesota Mining and Manufacturing (3M) and by Imperial Chemical Industries (ICI) at about the same time (81). In the polymerisation step, sulfone links are formed by reaction of an aromatic sulfonyl chloride with a second aromatic ring. The reaction is similar to the Friedel-Crafts acylation reaction. The key to development of sulfonylation as a polymerisation process was the discovery that, unlike the acylation reaction which requires equimolar amounts of aluminum chloride or other strong Lewis acids, sulfonylation can be accompHshed with only catalytic amounts of certain haUdes, eg, FeCl, SbCl, and InCl. The reaction is a typical electrophilic substitution by an arylsulfonium cation (eq. 13). [Pg.332]

Acylation. Aromatic amines react with acids, acid chlorides, anhydrides, and esters to form amides. In general, acid chlorides give the best yield of the pure product. The reaction with acetic, propionic, butanoic, or benzoic acid can be catalyzed with phosphoms oxychloride or trichloride. [Pg.229]

Friedel-Crafts Acylation. The Friedel-Crafts acylation procedure is the most important method for preparing aromatic ketones and thein derivatives. Acetyl chloride (acetic anhydride) reacts with benzene ia the presence of aluminum chloride or acid catalysts to produce acetophenone [98-86-2], CgHgO (1-phenylethanone). Benzene can also be condensed with dicarboxyHc acid anhydrides to yield benzoyl derivatives of carboxyHc acids. These benzoyl derivatives are often used for constmcting polycycHc molecules (Haworth reaction). For example, benzene reacts with succinic anhydride ia the presence of aluminum chloride to produce P-benzoylpropionic acid [2051-95-8] which is converted iato a-tetralone [529-34-0] (30). [Pg.40]

Another important use of BCl is as a Ftiedel-Crafts catalyst ia various polymerisation, alkylation, and acylation reactions, and ia other organic syntheses (see Friedel-Crafts reaction). Examples include conversion of cyclophosphasenes to polymers (81,82) polymerisation of olefins such as ethylene (75,83—88) graft polymerisation of vinyl chloride and isobutylene (89) stereospecific polymerisation of propylene (90) copolymerisation of isobutylene and styrene (91,92), and other unsaturated aromatics with maleic anhydride (93) polymerisation of norhornene (94), butadiene (95) preparation of electrically conducting epoxy resins (96), and polymers containing B and N (97) and selective demethylation of methoxy groups ortho to OH groups (98). [Pg.224]

H-Bond Acceptor (HBA) Acyl chlorides Acyl fluorides Hetero nitrogen aromatics Hetero oj gen aromatics Tertiary amides Tertiary amines Other nitriles Other nitros Isocyanates Peroxides Aldehydes Anhydrides Cyclo ketones Ahphatic ketones Esters Ethers Aromatic esters Aromatic nitriles Aromatic ethers Sulfones Sulfolanes... [Pg.1318]


See other pages where Aromatics acylation acyl chlorides is mentioned: [Pg.96]    [Pg.90]    [Pg.182]    [Pg.243]    [Pg.725]    [Pg.76]    [Pg.101]    [Pg.551]    [Pg.557]    [Pg.557]    [Pg.558]    [Pg.558]    [Pg.560]    [Pg.383]    [Pg.465]    [Pg.155]    [Pg.293]    [Pg.108]   
See also in sourсe #XX -- [ Pg.7 , Pg.42 , Pg.111 , Pg.160 ]




SEARCH



Acetyl chloride aromatics acylation

Acyl chlorides

Acyl chlorides aromatic

Acyl chlorides aromatic

Acyl chlorides aromatic compound reactions with

Acylation acyl chlorides

Acylation, aromatic

Aluminum chloride aromatics acylation

Aromatics acylation

Chlorides aromatic

Electrophilic aromatic acyl chlorides

© 2024 chempedia.info