Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acyclic Enantioselection

Another approach to enantioselective reductions involves reactions with chiral tin hydrides. The helical chirality of the binaphthyl group has been taken advantage of in the design of chiral tin reagents. An example of an enantioselective reduction using chiral tin hydride 88 is shown in Eq. (13.26) [38]. The reduced products are formed in low enantiomeric excesses (41 % ee) and low chemical yields (often under 50%). These factors and the difficulty in synthesizing the chiral tin hydride reagents serve to diminish the utility of these types of enantioselective reductions thus far. [Pg.521]

The combination of aluminum Lewis acids and chiral diols has allowed for modest enantioselectivities in similar reactions using oxazolidinone templates and a-iodopropionate substrate as in Eq. (13.30) [42]. The 4,4-dimethyl substituent on the oxazolidinone (99) favors the s-cis conformation for the intermediate radical. Enantioselectivities of 32 and 34% and yields above 90% were obtained for ally-lations with R=H and R=Me respectively. [Pg.522]

Radical reactions are also valuable strategies for the formation of quaternary carbon centers. An enantioselective variant of this has recently come to light utilizing aluminum as a Lewis acid complexed to a chiral binol ligand (103) in the allylation of -iodolactones 101 (Eq. (13.31), Table 13-6) [43]. It was established that diethyl ether as an additive in these reactions dramatically increases product enantioselectivities (compare entries 1 and 2, Table 13-6). Catalytic reactions were also demonstrated (entry 3) with no appreciable loss of selectivity. A proposed model for how diethyl ether functions to enhance selectivity in the enantioselective formation of these quaternary chiral centers is shown in 104. [Pg.523]


Cationic BINAP-palladium and platinum complexes 30a,b can catalyze highly enantioselective cycloaddition reactions of arylglyoxals with acyclic and cyclic... [Pg.171]

The chiral BOX-copper(ll) complexes, (S)-21a and (l )-21b (X=OTf, SbFg), were found by Evans et al. to catalyze the enantioselective cycloaddition reactions of the a,/ -unsaturated acyl phosphonates 49 with ethyl vinyl ether 46a and the cyclic enol ethers 50 giving the cycloaddition products 51 and 52, respectively, in very high yields and ee as outlined in Scheme 4.33 [38b]. It is notable that the acyclic and cyclic enol ethers react highly stereoselectively and that the same enantiomer is formed using (S)-21a and (J )-21b as the catalyst. It is, furthermore, of practical importance that the cycloaddition reaction can proceed in the presence of only 0.2 mol% (J )-21a (X=SbF6) with minimal reduction in the yield of the cycloaddition product and no loss of enantioselectivity (93% ee). [Pg.179]

In an analogous study by Meske, the impact of various oxazaborolidinone catalysts for the 1,3-dipolar cycloaddition reactions between acyclic nitrones and vinyl ethers was studied [31]. Both the diastereo- and the enantioselectivities obtained in this work were low. The highest enantioselectivity was obtained by the application of 100 mol% of the tert-butyl-substituted oxazaborolidinone catalyst 3d [27, 32] in the 1,3-dipolar cycloaddition reaction between nitrone la and ethyl vinyl ether 8a giving endo-9a and exo-9a in 42% and 27% isolated yield, respectively, with up to 20% ee for endo-9a as the best result (Scheme 6.10). [Pg.219]

The reactions of nitrones constitute the absolute majority of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions. Boron, aluminum, titanium, copper and palladium catalysts have been tested for the inverse electron-demand 1,3-dipolar cycloaddition reaction of nitrones with electron-rich alkenes. Fair enantioselectivities of up to 79% ee were obtained with oxazaborolidinone catalysts. However, the AlMe-3,3 -Ar-BINOL complexes proved to be superior for reactions of both acyclic and cyclic nitrones and more than >99% ee was obtained in some reactions. The Cu(OTf)2-BOX catalyst was efficient for reactions of the glyoxylate-derived nitrones with vinyl ethers and enantioselectivities of up to 93% ee were obtained. [Pg.244]

Organoboron reagents ate pariictdarly well suited for 1,4-additions of aryl and vinyl groups to enones. Hayasbi et al. developed a highly enantioselective RliQ)/ BlNAP-catalyzed 1,4-addilion of pbenylbotonic add lo cyclic and acyclic enones [24] fSclieme 7.5) and 1-alkenylpbospbonales [25]. [Pg.227]

Until this work, the reactions between the benzyl sulfonium ylide and ketones to give trisubstituted epoxides had not previously been used in asymmetric sulfur ylide-mediated epoxidation. It was found that good selectivities were obtained with cyclic ketones (Entry 6), but lower diastereo- and enantioselectivities resulted with acyclic ketones (Entries 7 and 8), which still remain challenging substrates for sulfur ylide-mediated epoxidation. In addition they showed that aryl-vinyl epoxides could also be synthesized with the aid of a,P-unsaturated sulfonium salts lOa-b (Scheme 1.4). [Pg.5]

Arai and co-workers have used chiral ammonium salts 89 and 90 (Scheme 1.25) derived from cinchona alkaloids as phase-transfer catalysts for asymmetric Dar-zens reactions (Table 1.12). They obtained moderate enantioselectivities for the addition of cyclic 92 (Entries 4—6) [43] and acyclic 91 (Entries 1-3) chloroketones [44] to a range of alkyl and aromatic aldehydes [45] and also obtained moderate selectivities on treatment of chlorosulfone 93 with aromatic aldehydes (Entries 7-9) [46, 47]. Treatment of chlorosulfone 93 with ketones resulted in low enantioselectivities. [Pg.23]

Nakajima reported the use of a chiral bipyridine N,N -dioxide 18 in the desym-metrization of acyclic meso epoxides (Figure 7.3). Although the enantioselectivity was not as high as in the method developed by Fu for meso-stilbene oxide (90% ee vs. 94% ee), it was higher for the same aliphatic epoxide (74% ee vs. 50% ee) [57]. Nakajima showed that mono-N-oxide derivatives 19 and 20 were much less effective than 18 in tenns of both yield and enantioselectivity, and accordingly proposed a unique mechanism for 18 involving a hexacoordinate silicon intermediate coordinated to both N-oxides of the catalyst. [Pg.249]

The structure of glabrescol was subsequently revised, and the new structure was synthesized enantioselectively through sequential hydroxy-directed anti-oxidative cyclization of acyclic y-alkenols with VO(acac)2/TBHP to construct the adjacent THF rings via epoxides under acid conditions [35b],... [Pg.283]

The reactions of allylboronates 1 (R = H or CH3) may proceed either by way of transition state 3, in which the a-substituent X adopts an axial position, or 4 in which X occupies an equatorial position. These two pathways are easily distinguished since 3 provides 7 with a Z-olefin, whereas 4 provides 8 with an E-olefinic linkage. There is also a second fundamental stereochemical difference between these two transition states 7 and 8 are heterochirally related from reactions in which 1 is not racemic. That is, 7 and 8 arc enantiomers once the stereochemistry-associated with the double bond is destroyed. Thus, the selectivity for reaction by way of 3 in preference to 4, or via 6 in preference to 5 in reactions of a-subsliluted (Z)-2-butenylboronate 2, is an important factor that determines the suitability of these reagents for applications in enantioselective or acyclic diastereoselective synthesis. [Pg.320]

Chromium aminocarbenes [39] are readily available from the reaction of K2Cr(CO)5 with iminium chlorides [40] or amides and trimethylsilyl chloride [41]. Those from formamides (H on carbene carbon) readily underwent photoreaction with a variety of imines to produce /J-lactams, while those having R-groups (e.g.,Me) on the carbene carbon produced little or no /J-lactam products [13]. The dibenzylaminocarbene complex underwent reaction with high diastereoselectivity (Table 4). As previously observed, cyclic, optically active imines produced /J-lactams with high enantioselectivity, while acyclic, optically active imines induced little asymmetry. An intramolecular version produced an unusual anti-Bredt lactam rather than the expected /J-lactam (Eq. 8) [44]. [Pg.165]

Inverse electron-demand Diels-Alder reaction of (E)-2-oxo-l-phenylsulfo-nyl-3-alkenes 81 with enolethers, catalyzed by a chiral titanium-based catalyst, afforded substituted dihydro pyranes (Equation 3.27) in excellent yields and with moderate to high levels of enantioselection [81]. The enantioselectivity is dependent on the bulkiness of the Ri group of the dienophile, and the best result was obtained when Ri was an isopropyl group. Better reaction yields and enantioselectivity [82, 83] were attained in the synthesis of substituted chiral pyranes by cycloaddition of heterodienes 82 with cyclic and acyclic enolethers, catalyzed by C2-symmetric chiral Cu(II) complexes 83 (Scheme 3.16). [Pg.124]

In 2006, these workers successfully expanded the previous study to several acyclic and cyclic allylic substrates (Scheme 1.17)." In all cases, the best enantioselectivity (up to 91% ee) was obtained by using the ligand that contained the more bulky sulfur substituent (t-Bu). The methodology was also applied to monosubstituted acyclic substrates but, however, this ligand proved to be inadequate in terms of regioselectivities, whereas a good enantioselectivity of up to 89% ee was obtained. [Pg.21]

The subsequent epoxidation of these in situ formed allylic tertiary alcohols yielded the corresponding syn-e oxy alcohols with high levels of diastereo- and enantioselectivity, thus providing a novel one-pot asymmetric synthesis of acyclic chiral epoxyalcohols via a domino vinylation epoxidation reaction (Scheme 4.17). ... [Pg.169]

Actually, the reactions led to the formation of the corresponding acyclic Mannich-type addition products, which were further transformed into their corresponding Diels-Alder adducts by treatment with TFA (Scheme 5.18). The 5, P-bidentate character of the ligands was proven by isolation of one complex and its X-ray analysis. Complexes prepared with CuCl afforded the expected product in up to 80% ee, whereas the use of CuBr as the catalytic precursor allowed an enantioselectivity of 97% ee to be obtained with the similar ligand. [Pg.199]

Another approach in the use of chiral S/P ligands for the hydrosilylation reaction of ketones was proposed more recently by Evans et Thus, in 2003, these workers studied the application of new chiral thioether-phosphinite ligands to enantioselective rhodium-catalysed ketone hydrosilylation processes. For a wide variety of ketones, such as acyclic aryl alkyl and dialkyl ketones as well as cyclic aryl alkyl ketones and also cyclic keto esters, the reaction gave high levels of enantioselectivity of up to 99% ee (Scheme 10.44). [Pg.330]

Enantioselectivity has been observed for acyclic ketones, using proline as a catalyst. Under optimum conditions, ds > 80% and e.e. > 70% were observed.324 These... [Pg.195]

Enantioselectivity can also be based on structural features present in the reactants. A silyl substituent has been used to control stereochemistry in both cyclic and acyclic systems. The silyl substituent can then be removed by TBAF.326 As with enolate alkylation (see p. 32), the steric effect of the silyl substituent directs the approach of the acceptor to the opposite face. [Pg.196]

N-donor ligand. The reaction appears to proceed via an acyclic iminoplatinum(II) intermediate that undergoes a subsequent intramolecular cyclization. Some mechanistic aspects of this versatile reaction have been elucidated.225,226 A4-l,2,4-oxadiazolines have been prepared by the [2+3] cycloaddition of various nitrones to coordinated benzonitrile in m-[PtCl2( D M SO)(PhCN)] precursors.227,228 Racemic and chiral [PtCl2(PhMeSO)(PhCN)] complexes have also been used in order to introduce a degree of stereoselectivity into the reaction, resulting in the first enantioselective synthesis of A4-l,2,4-oxadiazolines, which can be liberated from the complexes by the addition of excess ethane-1,2-diamine. [Pg.702]

For clarification, individual transformations of independent functionalities in one molecule - also forming several bonds under the same reaction conditions -are not classified as domino reactions. The enantioselective total synthesis of (-)-chlorothricolide 0-4, as performed by Roush and coworkers [8], is a good example of tandem and domino processes (Scheme 0.1). I n the reaction of the acyclic substrate 0-1 in the presence of the chiral dienophile 0-2, intra- and intermolecular Diels-Alder reactions take place to give 0-3 as the main product. Unfortunately, the two reaction sites are independent from each other and the transformation cannot therefore be classified as a domino process. Nonetheless, it is a beautiful tandem reaction that allows the establishment of seven asymmetric centers in a single operation. [Pg.2]


See other pages where Acyclic Enantioselection is mentioned: [Pg.102]    [Pg.521]    [Pg.531]    [Pg.102]    [Pg.521]    [Pg.531]    [Pg.56]    [Pg.172]    [Pg.254]    [Pg.132]    [Pg.254]    [Pg.271]    [Pg.185]    [Pg.1417]    [Pg.226]    [Pg.149]    [Pg.20]    [Pg.75]    [Pg.77]    [Pg.77]    [Pg.81]    [Pg.85]    [Pg.90]    [Pg.101]    [Pg.185]    [Pg.369]    [Pg.419]    [Pg.820]    [Pg.821]    [Pg.1245]    [Pg.1337]   


SEARCH



Acyclic enones, enantioselective conjugate

Acyclic enones, enantioselective conjugate addition

Enantioselectivity acyclic enones

© 2024 chempedia.info