Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activity complexation effects

Reactants Activated complex Effect of ionic liquid on rate... [Pg.28]

In 1961 Berson et al. were the first to study systematically the effect of the solvent on the endo-exo selectivity of the Diels-Alder reaction . They interpreted the solvent dependence of the endo-exo ratio by consideririg the different polarities of the individual activated complexes involved. The endo activated complex is of higher polarity than the exo activated complex, because in the former the dipole moments of diene and dienophile are aligned, whereas in the latter they are pointing in... [Pg.10]

In summary, a wealtli of experimental data as well as a number of sophisticated computer simulations univocally indicate that two important effects underlie the acceleration of Diels-Alder reactions in aqueous media hydrogen bonding and enforced hydrophobic interactionsIn terms of transition state theory hydrophobic hydration raises the initial state more tlian tlie transition state and hydrogen bonding interactions stabilise ftie transition state more than the initial state. The highly polarisable activated complex plays a key role in both of these effects. [Pg.24]

Breslow studied the dimerisation of cyclopentadiene and the reaction between substituted maleimides and 9-(hydroxymethyl)anthracene in alcohol-water mixtures. He successfully correlated the rate constant with the solubility of the starting materials for each Diels-Alder reaction. From these relations he estimated the change in solvent accessible surface between initial state and activated complex " . Again, Breslow completely neglects hydrogen bonding interactions, but since he only studied alcohol-water mixtures, the enforced hydrophobic interactions will dominate the behaviour. Recently, also Diels-Alder reactions in dilute salt solutions in aqueous ethanol have been studied and minor rate increases have been observed Lubineau has demonstrated that addition of sugars can induce an extra acceleration of the aqueous Diels-Alder reaction . Also the effect of surfactants on Diels-Alder reactions has been studied. This topic will be extensively reviewed in Chapter 4. [Pg.26]

Table 2.10 shows the effect of substituents on the endo-exo ratio. Under homogeneous conditions there is hardly any substituent effect on the selectivity. Consequently the substituents must have equal effects on the Gibbs energies of the endo and the exo activated complex. [Pg.63]

In the case of the retro Diels-Alder reaction, the nature of the activated complex plays a key role. In the activation process of this transformation, the reaction centre undergoes changes, mainly in the electron distributions, that cause a lowering of the chemical potential of the surrounding water molecules. Most likely, the latter is a consequence of an increased interaction between the reaction centre and the water molecules. Since the enforced hydrophobic effect is entropic in origin, this implies that the orientational constraints of the water molecules in the hydrophobic hydration shell are relieved in the activation process. Hence, it almost seems as if in the activated complex, the hydrocarbon part of the reaction centre is involved in hydrogen bonding interactions. Note that the... [Pg.168]

The rate of the Lewis-acid catalysed Diels-Alder reaction in water has been compared to that in other solvents. The results demonstrate that the expected beneficial effect of water on the Lewis-acid catalysed reaction is indeed present. However, the water-induced acceleration of the Lewis-add catalysed reaction is not as pronounced as the corresponding effect on the uncatalysed reaction. The two effects that underlie the beneficial influence of water on the uncatalysed Diels-Alder reaction, enforced hydrophobic interactions and enhanced hydrogen bonding of water to the carbonyl moiety of 1 in the activated complex, are likely to be diminished in the Lewis-acid catalysed process. Upon coordination of the Lewis-acid catalyst to the carbonyl group of the dienophile, the catalyst takes over from the hydrogen bonds an important part of the activating influence. Also the influence of enforced hydrophobic interactions is expected to be significantly reduced in the Lewis-acid catalysed Diels-Alder reaction. Obviously, the presence of the hydrophilic Lewis-acid diminished the nonpolar character of 1 in the initial state. [Pg.174]

Activators. Activators are chemicals that increase the rate of vulcanization by reacting first with the accelerators to form mbber soluble complexes. These complexes then react with the sulfur to achieve vulcanization. The most common activators are combinations of zinc oxide and stearic acid. Other metal oxides have been used for specific purposes, ie, lead, cadmium, etc, and other fatty acids used include lauric, oleic, and propionic acids. Soluble zinc salts of fatty acid such as zinc 2-ethyIhexanoate are also used, and these mbber-soluble activators are effective in natural mbber to produce low set, low creep compounds used in load-bearing appHcations. Weak amines and amino alcohols have also been used as activators in combination with the metal oxides. [Pg.237]

As with most other metals, the anodic behaviour of nickel is influenced by the composition of the solution in which measurements are made, particularly if the solution is acidic. Acidic solutions containing d ions or certain sulphur compounds in particular have a pronounced influence both in increasing the rate of anodic dissolution in the active range and in preventing passivation, and in stimulating localised corrosion . Thiourea and some of its derivatives have a complex effect, acting either as anodic stimulators or inhibitors, depending on their concentration . [Pg.768]

Figure 8-8 shows the analogous situation for a chemical reaction. The solid curve shows the activation energy barrier which must be surmounted for reaction to take place. When a catalyst is added, a new reaction path is provided with a different activation energy barrier, as suggested by the dashed curve. This new reaction path corresponds to a new reaction mechanism that permits the reaction to occur via a different activated complex. Hence, more particles can get over the new, lower energy barrier and the rate of the reaction is increased. Note that the activation energy for the reverse reaction is lowered exactly the same amount as for the forward reaction. This accounts for the experimental fact that a catalyst for a reaction has an equal effect on the reverse reaction that is, both reactions are speeded up by the same factor. If a catalyst doubles the rate in one direction, it also doubles the rate in the reverse direction. [Pg.137]

It seemed to us that the concept of primary salt effect was worth consideration for the polyelectrolyte catalysis156 . According to Bronsted157 and Bjerrum1 s8 the rate constant of the reaction is accounted for in terms of the activated complex theory A + B X -> C + D, X is the activated complex, C and D denote the product. The second-order rate constant, k2, is given by... [Pg.173]

The loss of Cl- from the molecular ion of ortho-chlorodiphenyl sulfoxide (o-ll) has been found to be significantly greater than from the meta- and para-isomers (equation 3)12. This observation is best explained by an ortho effect in accord with a tight activated complex. [Pg.128]

An example of a reaction series in which large deviations are shown by — R para-substituents is provided by the rate constants for the solvolysis of substituted t-cumyl chlorides, ArCMe2Cl54. This reaction follows an SN1 mechanism, with intermediate formation of the cation ArCMe2 +. A —R para-substituent such as OMe may stabilize the activated complex, which resembles the carbocation-chloride ion pair, through delocalization involving structure 21. Such delocalization will clearly be more pronounced than in the species involved in the ionization of p-methoxybenzoic acid, which has a reaction center of feeble + R type (22). The effective a value for p-OMe in the solvolysis of t-cumyl chloride is thus — 0.78, compared with the value of — 0.27 based on the ionization of benzoic acids. [Pg.496]

In this book the discussion has been restricted to the structure of the normal states of molecules, with little reference to the great part of chemistry dealing with the mechanisms and rates of chemical reactions. It seems probable that the concept of resonance can be applied very effectively in this field. The activated complexes which represent intermediate stages in chemical reactions are, almost without exception, unstable molecules which resonate among several valence-bond structures. Thus, according to the theory of Lewis, Olson, and Polanyi, Walden inversion occurs in the hydrolysis of an alkyl halide by the following mechanism ... [Pg.253]

The activated complex can be described as involving resonance of the fourth bond of carbon between the hydroxyl and iodine ions. Some very interesting rough quantum-mechanical calculations bearing on the theory of chemical reactions have been made of Eyring and Polanyi and their collaborators. It is to be hoped that the quantitative treatments can be made more precise and more-reliable but before this can be done effectively there must take place the extensive development of the qualitative theory of chemical reactions, probably in terms of resonance. [Pg.253]

Should a complete potential energy surface be subjected to outer and inner effects, then a new potential energy surface is obtained on which the corresponding rection paths can be followed. This is described in part 4.3.1 by the example of the potential energy surface of the system C2H5+ jC2H4 under solvent influence. After such calculations, reaction theory assertions concerning the reaction path and the similarity between the activated complex and educts or products respectively can be made. [Pg.193]

In nitrate media ( 6 Af), fluoride ion has a catalytic effect on the exchange reaction between Ce(IV) and Ce(III). Hornig and Libby have made a detailed study of this effect, over the range of added KF, 0 to 8.4 x 10 M, and have concluded that a pathway involving a monofluoro complex occurs, possibly involving a fluoride-bridged activated complex. [Pg.130]

The reaction between Fe(IlI) and Sn(Il) in dilute perchloric acid in the presence of chloride ions is first-order in Fe(lll) concentration . The order is maintained when bromide or iodide is present. The kinetic data seem to point to a fourth-order dependence on chloride ion. A minimum of three Cl ions in the activated complex seems necessary for the reaction to proceed at a measurable rate. Bromide and iodide show third-order dependences. The reaction is retarded by Sn(II) (first-order dependence) due to removal of halide ions from solution by complex formation. Estimates are given for the formation constants of the monochloro and monobromo Sn(II) complexes. In terms of catalytic power 1 > Br > Cl and this is also the order of decreasing ease of oxidation of the halide ion by Fe(IlI). However, the state of complexing of Sn(ll)and Fe(III)is given by Cl > Br > I". Apparently, electrostatic effects are not effective in deciding the rate. For the case of chloride ions, the chief activated complex is likely to have the composition (FeSnC ). The kinetic data cannot resolve the way in which the Cl ions are distributed between Fe(IlI) and Sn(ll). [Pg.184]


See other pages where Activity complexation effects is mentioned: [Pg.778]    [Pg.2985]    [Pg.6]    [Pg.6]    [Pg.6]    [Pg.23]    [Pg.56]    [Pg.62]    [Pg.515]    [Pg.73]    [Pg.112]    [Pg.481]    [Pg.71]    [Pg.125]    [Pg.778]    [Pg.134]    [Pg.350]    [Pg.1002]    [Pg.16]    [Pg.103]    [Pg.217]    [Pg.221]    [Pg.250]    [Pg.502]    [Pg.1105]    [Pg.112]    [Pg.73]    [Pg.196]    [Pg.202]    [Pg.205]    [Pg.210]    [Pg.226]   
See also in sourсe #XX -- [ Pg.9 ]




SEARCH



© 2024 chempedia.info