Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activation polarisation

In summary, a wealtli of experimental data as well as a number of sophisticated computer simulations univocally indicate that two important effects underlie the acceleration of Diels-Alder reactions in aqueous media hydrogen bonding and enforced hydrophobic interactionsIn terms of transition state theory hydrophobic hydration raises the initial state more tlian tlie transition state and hydrogen bonding interactions stabilise ftie transition state more than the initial state. The highly polarisable activated complex plays a key role in both of these effects. [Pg.24]

Krauss, S., Concordet, J.P., Ingham, P.W. (1993). A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarising activity in zebrafish embryos. Cell 75,1431-1444. [Pg.118]

Riddle, R., Johnson, R., Laufer, E., Tabin, C. (1993). Sonic Hedgehog mediates the polarising activity of the ZPA. Cell 75, 1401-1411. [Pg.118]

Apical ectodermal ridge Zone of polarising activity... [Pg.201]

Figure 9.1 Schematic plot of voltage versus current density showing different types of polarisations activation polarisation is usually dominant at low current densities, and concentration polarisation is dominant at high current densities when the transport of reactive species to the electrolyte/electrode interface becomes a limiting factorfor the cell reaction. Figure 9.1 Schematic plot of voltage versus current density showing different types of polarisations activation polarisation is usually dominant at low current densities, and concentration polarisation is dominant at high current densities when the transport of reactive species to the electrolyte/electrode interface becomes a limiting factorfor the cell reaction.
The regioselectivity benefits from the increased polarisation of the alkene moiety, reflected in the increased difference in the orbital coefficients on carbon 1 and 2. The increase in endo-exo selectivity is a result of an increased secondary orbital interaction that can be attributed to the increased orbital coefficient on the carbonyl carbon ". Also increased dipolar interactions, as a result of an increased polarisation, will contribute. Interestingly, Yamamoto has demonstrated that by usirg a very bulky catalyst the endo-pathway can be blocked and an excess of exo product can be obtained The increased di as tereo facial selectivity has been attributed to a more compact transition state for the catalysed reaction as a result of more efficient primary and secondary orbital interactions as well as conformational changes in the complexed dienophile" . Calculations show that, with the polarisation of the dienophile, the extent of asynchronicity in the activated complex increases . Some authors even report a zwitteriorric character of the activated complex of the Lewis-acid catalysed reaction " . Currently, Lewis-acid catalysis of Diels-Alder reactions is everyday practice in synthetic organic chemistry. [Pg.12]

Using the calculated phonon modes of a SWCNT, the Raman intensities of the modes are calculated within the non-resonant bond polarisation theory, in which empirical bond polarisation parameters are used [18]. The bond parameters that we used in this chapter are an - aj = 0.04 A, aji + 2a = 4.7 A and an - a = 4.0 A, where a and a are the polarisability parameters and their derivatives with respect to bond length, respectively [12]. The Raman intensities for the various Raman-active modes in CNTs are calculated at a phonon temperature of 300K which appears in the formula for the Bose distribution function for phonons. The eigenfunctions for the various vibrational modes are calculated numerically at the T point k=Q). [Pg.55]

Commercial amyl alcohol is contained in fusel oil from fer mentation and consists mainly of isobutyl carbinol together with about 13 per cent, of secondary butyl carbinol, which renders the liquid optically active. It turns the plane of polarisation to the left (see p. 116). [Pg.69]

The angle of rotation is, of course, directly proportional to the thickness of the layer of active substance through which the polarised light passes. The expression optical rotation or rotatory power is universally understood to be the observed angle of rotation produced by a column of 100 mm. of the optically active substance. If tubes of other lengths be... [Pg.308]

Cyclic voltammetry (adsorption, monolayers) Potentiodynamic polarisation (passivation, activation) Cathodic reduction (thickness) Frequency response analysis (electrical properties, heterogeneity) Chronopotentiometry (kinetics)... [Pg.30]

Passivity of a metal lies in contrast to its activity, in which the metal corrodes freely under an anodic driving force. The passive state is well illustrated by reference to a classical polarisation curve prepared poten-tiostatically or potentiodynamically (Figure 1.39). As the potential is raised... [Pg.119]

Fig. 1.39 Schematic anodic polarisation curve for a metal. Region AB describes active dissolution of the metal. BC is the active/passive transition, with passivation commencing at B. Passivation is complete only at potentials higher than C. The metal is passive over the range CD... Fig. 1.39 Schematic anodic polarisation curve for a metal. Region AB describes active dissolution of the metal. BC is the active/passive transition, with passivation commencing at B. Passivation is complete only at potentials higher than C. The metal is passive over the range CD...
Fig. 1.40 Schematic anodic polarisation curve for a passivatable metal (solid line), shown together with three alternative cathodic reactions (broken line). Open-circuit corrosion potentials are determined by the intersection between the anodic and cathodic reaction rates. Cathode a intersects the anodic curve in the active region and the metal corrodes. Cathode b intersects at three possible points for which the metal may actively corrode or passivate, but passivity could be unstable. Only cathode c provides stable passivity. The lines a, b and c respectively could represent different cathodic reactions of increasing oxidizing power, or they could represent the same oxidizing agent at increasing concentration. Fig. 1.40 Schematic anodic polarisation curve for a passivatable metal (solid line), shown together with three alternative cathodic reactions (broken line). Open-circuit corrosion potentials are determined by the intersection between the anodic and cathodic reaction rates. Cathode a intersects the anodic curve in the active region and the metal corrodes. Cathode b intersects at three possible points for which the metal may actively corrode or passivate, but passivity could be unstable. Only cathode c provides stable passivity. The lines a, b and c respectively could represent different cathodic reactions of increasing oxidizing power, or they could represent the same oxidizing agent at increasing concentration.
Fig. 1.41 Schematic anodic polarisation curves for a passivatable metal showing the effect of a passivating agent that has no specific cathodic action, but forms a sparingly soluble salt with the metal cation, a without the passivating agent, b with the passivating agent. The passive current density, the active/passive transition and the critical current density are all lowered in b. The effect of the cathodic reaction c, is to render the metal active in case a, and passive... Fig. 1.41 Schematic anodic polarisation curves for a passivatable metal showing the effect of a passivating agent that has no specific cathodic action, but forms a sparingly soluble salt with the metal cation, a without the passivating agent, b with the passivating agent. The passive current density, the active/passive transition and the critical current density are all lowered in b. The effect of the cathodic reaction c, is to render the metal active in case a, and passive...
Lewis, E. C., Grain Boundary Corrosion of Sensitised Type 304 Stainless Steel by a Noble-to-active Polarisation Scan , J. Electrochem. Soc., 119, 219C (1972)... [Pg.201]

Note that Reference" draws attention to the possibility of an increase of anodic polarisation of the more negative member of a couple leading to a decrease in galvanic corrosion rate. There can also be a risk of increased corrosion of the more positive member of a couple. Both these features can arise as a result of active/passive transition effects on certain metals in certain environments. [Pg.230]

Zembura has made specific use of the rotating disc for investigation of the effect of flow on corrosion reactions. This work has shown that it is possible to determine the type of control (activation or concentration polarisation) of zinc dissolving in 0.1 N Na2S04 (de-aerated), which followed closely the predicted increase in hydrogen ion reduction as the flow rate increased, and proved that in this example... [Pg.315]

It is convenient to consider three stages of anode polarisation with regard to temperature effects, (a) under film-free conditions, (b) under film-forming conditions and (c) at the active-passive transition. [Pg.323]

The work of Porter et al. has shown that for copper in phosphoric acid the interfacial temperature was the main factor, and furthermore this was the case for positive or negative heat flux. Activation energies were determined for this system they indicated that concentration polarisation was the rate-determining process, and by adjustment of the diffusion coefficient and viscosity for the temperature at the interface and the application of dimensional group analysis it was found that ... [Pg.328]

In-vitro fretting corrosion experiments have been performed using weight loss , polarisation and corrosion potential measurements. Thull and Schaldach have performed corrosion potential versus time measurements in-vitro in a joint simulator with different values of applied load. Brown and Simpson have performed similar studies with screw/plate fretting. Both studies found larger shifts towards active potentials with larger loads . [Pg.473]

The general form of the anodic polarisation curve of the stainless steels in acid solutions as determined potentiostaticaiiy or potentiodynamically is shown in Fig. 3.14, curve ABCDE. If the cathodic curve of the system PQ intersects this curve at P between B and C only, the steel is passive and the film should heal even if damaged. This, then, represents a condition in which the steel can be used with safety. If, however, the cathodic curve P Q also intersects ED the passivity is unstable and any break in the film would lead to rapid metal solution, since the potential is now in the active region and the intersection at Q gives the stable corrosion potential and corrosion current. [Pg.531]

Polarisation from an external source may also affect the range of passivity. Cathodic polarisation may depress the potential from the passive to the active region (see Fig. 3.14) and thus care should be taken to avoid contact with any other corroding metal. Anodic polarisation, on the other hand, can stabilise passivity provided that the potential is not increased into the range of transpassivity (see Fig. 3.14) and anodic protection is quite feasible. [Pg.547]


See other pages where Activation polarisation is mentioned: [Pg.200]    [Pg.201]    [Pg.202]    [Pg.202]    [Pg.200]    [Pg.201]    [Pg.202]    [Pg.202]    [Pg.24]    [Pg.56]    [Pg.182]    [Pg.513]    [Pg.405]    [Pg.59]    [Pg.263]    [Pg.306]    [Pg.307]    [Pg.308]    [Pg.96]    [Pg.121]    [Pg.124]    [Pg.125]    [Pg.135]    [Pg.137]    [Pg.225]    [Pg.237]    [Pg.311]    [Pg.322]    [Pg.330]    [Pg.473]    [Pg.532]    [Pg.567]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Polarisability

Polarisable

Polarisation

Polariser

© 2024 chempedia.info