Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activity coefficient UNIQUAC

Laar Margules Wilson nonrandom, two liquid phases (NRTL), or Renon-Prausnitz and Universal Quasi-Chemical Activity Coefficients (UNIQUAC). All of these equations have two constants except for the NRTL, which has three. [Pg.979]

A group contribution method called UNIFAC, an acronym which stands for the UNIQUAC Functional Group Activity Coefficient (UNIQUAC stands for the Universal Quasi-chemical Activity Coefficient), has been developed for estimating liquid-phase activity coefficients in non-electrolyte mixtures. The UNIFAC method is fully described by Fredenslund, Jones and Prausnitz (1975) and Skold-Jorgensen, Rasmussen and Fredenslund (1982). [Pg.122]

LW/QUAC Functional-group Activity Coefficients UNIQUAC... [Pg.43]

To illustrate calculations for a binary system containing a supercritical, condensable component. Figure 12 shows isobaric equilibria for ethane-n-heptane. Using the virial equation for vapor-phase fugacity coefficients, and the UNIQUAC equation for liquid-phase activity coefficients, calculated results give an excellent representation of the data of Kay (1938). In this case,the total pressure is not large and therefore, the mixture is at all times remote from critical conditions. For this binary system, the particular method of calculation used here would not be successful at appreciably higher pressures. [Pg.59]

Table 3 shows results obtained from a five-component, isothermal flash calculation. In this system there are two condensable components (acetone and benzene) and three noncondensable components (hydrogen, carbon monoxide, and methane). Henry s constants for each of the noncondensables were obtained from Equations (18-22) the simplifying assumption for dilute solutions [Equation (17)] was also used for each of the noncondensables. Activity coefficients for both condensable components were calculated with the UNIQUAC equation. For that calculation, all liquid-phase composition variables are on a solute-free basis the only required binary parameters are those for the acetone-benzene system. While no experimental data are available for comparison, the calculated results are probably reliable because all simplifying assumptions are reasonable the... [Pg.61]

Since we make the simplifying assumption that the partial molar volumes are functions only of temperature, we assume that, for our purposes, pressure has no effect on liquid-liquid equilibria. Therefore, in Equation (23), pressure is not a variable. The activity coefficients depend only on temperature and composition. As for vapor-liquid equilibria, the activity coefficients used here are given by the UNIQUAC equation. Equation (15). ... [Pg.63]

Activity coefficients for condensable components are calculated with the UNIQUAC Equation (4-15)/ and infinite-dilution activity coefficients for noncondensable components are calculated with Equation (4-22). ... [Pg.310]

If the mutual solubilities of the solvents A and B are small, and the systems are dilute in C, the ratio ni can be estimated from the activity coefficients at infinite dilution. The infinite dilution activity coefficients of many organic systems have been correlated in terms of stmctural contributions (24), a method recommended by others (5). In the more general case of nondilute systems where there is significant mutual solubiUty between the two solvents, regular solution theory must be appHed. Several methods of correlation and prediction have been reviewed (23). The universal quasichemical (UNIQUAC) equation has been recommended (25), which uses binary parameters to predict multicomponent equihbria (see Eengineering, chemical DATA correlation). [Pg.61]

UNIFAC andASOG Development. Pertinent equations of the UNIQUAC functional-group activity coefficient (UNIFAC) model for prediction of activity coefficients including example calculations are available (162). Much of the background of UNIFAC involves another QSAR technique, the analytical solution of groups (ASOG) method (163). [Pg.249]

Outlined below are the steps required for of a X T.E calciilation of vapor-phase composition and pressure, given the liquid-phase composition and temperature. A choice must be made of an equation of state. Only the Soave/Redlich/Kwong and Peng/Robinson equations, as represented by Eqs. (4-230) and (4-231), are considered here. These two equations usually give comparable results. A choice must also be made of a two-parameter correlating expression to represent the liquid-phase composition dependence of for each pq binaiy. The Wilson, NRTL (with a fixed), and UNIQUAC equations are of general applicabihty for binary systems, the Margules and van Laar equations may also be used. The equation selected depends on evidence of its suitability to the particular system treated. Reasonable estimates of the parameters in the equation must also be known at the temperature of interest. These parameters are directly related to infinite-dilution values of the activity coefficients for each pq binaiy. [Pg.539]

The Universal Quasichemical (UNIQUAC) is a two-parameter (t12, x21) model based on statistical mechanical theory. Activity coefficients are obtained by... [Pg.277]

Blanco et al. have also correlated the results with the van Laar, Wilson, NRTL and UNIQUAC activity coefficient models and found all of them able to describe the observed phase behavior. The value of the parameter ai2 in the NRTL model was set equal to 0.3. The estimated parameters were reported in Table 10 of the above reference. Using the data of Table 15.7 estimate the binary parameters in the Wislon, NRTL and UNIQUAC models. The objective function to be minimized is given by Equation 15.11. [Pg.282]

The UNIQUAC equation can be used to estimate activity coefficients and liquid compositions for multicomponent liquid-liquid systems. The UNIFAC method can be... [Pg.349]

ACT = correlation for liquid-phase activity coefficient such as, Wilson, NRTL, UNIQUAC, UNIFAC. [Pg.351]

These models are semiempirical and are based on the concept that intermolecular forces will cause nonrandom arrangement of molecules in the mixture. The models account for the arrangement of molecules of different sizes and the preferred orientation of molecules. In each case, the models are fitted to experimental binary vapor-liquid equilibrium data. This gives binary interaction parameters that can be used to predict multicomponent vapor-liquid equilibrium. In the case of the UNIQUAC equation, if experimentally determined vapor-liquid equilibrium data are not available, the Universal Quasi-chemical Functional Group Activity Coefficients (UNIFAC) method can be used to estimate UNIQUAC parameters from the molecular structures of the components in the mixture3. [Pg.62]

A model is needed to calculate liquid-liquid equilibrium for the activity coefficient from Equation 4.67. Both the NRTL and UNIQUAC equations can be used to predict liquid-liquid equilibrium. Note that the Wilson equation is not applicable to liquid-liquid equilibrium and, therefore, also not applicable to vapor-liquid-liquid equilibrium. Parameters from the NRTL and UNIQUAC equations can be correlated from vapor-liquid equilibrium data6 or liquid-liquid equilibrium data9,10. The UNIFAC method can be used to predict liquid-liquid equilibrium from the molecular structures of the components in the mixture3. [Pg.71]

Given a prediction of the liquid-phase activity coefficients, from say the NRTL or UNIQUAC equations, then Equations 4.69 and 4.70 can be solved simultaneously for x and x . There are a number of solutions to these equations, including a trivial solution corresponding with x[ = x[. For a solution to be meaningful ... [Pg.71]

Here y,1 and y,2 are the corresponding activity coefficients of component i in phase 1 and 2, Xj1, and x,2 are the mole fraction of components i in the system and in phase 1 and 2 respectively. The interaction parameters between methylcyclohexane, methanol and ethyl benzene are used to estimate the activity coefficients from the UNIQUAC groups. Eqs. (1) and (2) are solved for the mole fraction (x) of component i in the two liquid phase.The UNIQUAC model (universal quasi -chemical model) is given by Abrams and prausnitz [8] as... [Pg.261]

Here, y 0 is combinatorial parte of the activity coefficient, and yR the residual part of the activity coefficient. The variable xy the adjustable parameter in the UNIQUAC equation and x the equilibrium mole fraction of component i. The parameter O ( segment fraction ) and 0 ( area fraction ) are given by the following equation ... [Pg.262]

For the purpose of this case study we will select Isopropyl alcohol as the crystallization solvent and assume that the NRTL-SAC solubility curve for Form A has been confirmed as reasonably accurate in the laboratory. If experimental solubility data is measured in IPA then it can be fitted to a more accurate (but non predictive) thermodynamic model such as NRTL or UNIQUAC at this point, taking care with analysis of the solid phase in equilibrium. As the activity coefficient model only relates to species in the liquid phase we can use the same model with each different set of AHm and Tm data to calculate the solubility of the other polymorphs of Cimetidine, as shown in Figure 21. True polymorphs only differ from each other in the solid phase and are otherwise chemically identical. [Pg.73]

The methods most generally used for the calculation of activity coefficients at intermediate pressures are the Wilson (1964) and UNIQUAC (Abrams and Prausnitz, 1975) equations. Wilson s equation was used by Sato et al. (1985) to predict the composition of fhe condensate gas stripped from a packed bed fermenter at 30°C, whilst Beck and Bauer (1989) used the UNIQUAC equation, with temperature-dependent parameters given by Kolbe and Gmehling (1985), for their model of an anaerobic gas-solid fluidized bed fermenter at 36°C. In this case it was necessary to go beyond the temperature range of fhe source data down to 16°C in order to predict the composition of the fluidizing gas leaving the condenser. [Pg.210]

In many studies of the SLE of ILs, three methods have been used to derive the solute activity coefficients, pj, from the so-called correlation equations that describe the Gibbs free energy of mixing (GE), fhe Wilson [103], UNIQUAC ASM [104], and NRTLl [105] models. Historically, fhe UNIQUAC... [Pg.24]

For most of the systems with alcohols, the description of SLE was given by the average standard mean deviation (oj) < 2 K for UNIQUAC ASM and NRTL 1 equations. The procedure of correlation has been described in many articles [52-54,79,84-88,91-94]. Using GE models the solute activity coefficients in the saturated solution, y, were described. [Pg.26]

For the systems with alcohols, the description of SLE given by the UNIQUAC ASM equation (assuming the association of alcohols) did not provide any better results. It can be understood as a picture of a very complicated interaction between the molecules in the solution it means that it exists not only in the association of alcohol molecules but also between alcohol and IL molecules and between IL molecules themselves. Parameters shown in Table 1.7 may be helpful to describe activity coefficients for any concentration, temperature, and to describe ternary mixtures. They are also useful for the complete thermod5mamic description of the solution. [Pg.26]

Values of the activity coefficients are deduced from experimental data of vapor-liquid equilibria and correlated or extended by any one of several available equations. Values also may be calculated approximately from structural group contributions by methods called UNIFAC and ASOG. For more than two components, the correlating equations favored nowadays are the Wilson, the NRTL, and UNIQUAC, and for some applications a solubility parameter method. The fust and last of these are given in Table 13.2. Calculations from measured equilibrium compositions are made with the rearranged equation... [Pg.373]

Experimental data on only 26 quaternary systems were found by Sorensen and Arlt (1979), and none of more complex systems, although a few scattered measurements do appear in the literature. Graphical representation of quaternary systems is possible but awkward, so that their behavior usually is analyzed with equations. To a limited degree of accuracy, the phase behavior of complex mixtures can be predicted from measurements on binary mixtures, and considerably better when some ternary measurements also are available. The data are correlated as activity coefficients by means of the UNIQUAC or NRTL equations. The basic principle of application is that at equilibrium the activity of each component is the same in both phases. In terms of activity coefficients this... [Pg.459]

TABLE 14.1. NRTL and UNIQUAC Correlations for Activity Coefficients of T hree-Component Mixtures8... [Pg.475]

UNIQUAC functional group activity coefficient universal quasi-chemical [15]... [Pg.221]


See other pages where Activity coefficient UNIQUAC is mentioned: [Pg.840]    [Pg.840]    [Pg.75]    [Pg.236]    [Pg.249]    [Pg.252]    [Pg.252]    [Pg.532]    [Pg.1294]    [Pg.1344]    [Pg.102]    [Pg.17]    [Pg.225]    [Pg.49]    [Pg.589]    [Pg.459]    [Pg.236]    [Pg.249]    [Pg.252]    [Pg.252]   
See also in sourсe #XX -- [ Pg.64 ]




SEARCH



Activity UNIQUAC)

Activity coefficients, liquid phase UNIQUAC equation

UNIQUAC

UNIQUAC model, activity coefficients

© 2024 chempedia.info