Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Active metal salts

The preparation of catalysts usually involves the impregnation of a support with a solution of active metal salts. The impregnated support is then dried, calcined to decompose the metal salt and then reduced (activated) to produce the catalyst in its active form. Microwaves have been employed at all stages of catalyst preparation. Beneficial effects of microwave heating, compared with conventional methods, have been observed especially in the drying, calcination, and activation steps. [Pg.347]

More Active Metal + Salt of Less Active Metal... [Pg.228]

Methylseleno esters are readily available in excellent yields by the reaction of Dimethylaluminum Methylselenolate with O-alkyl esters. These selenoesters will acylate reactive arenes (eq 69) and heterocyclic compounds (eq 70) when activated by CuOTf, a selenophilic Lewis acid. Of the potential activating metal salts tested, (CuOTf)2 QHe is uniquely effective. Mer-cury(ll) or copper(l) trifluoroacetates that are partially organic-soluble, as well as the corresponding chlorides, silver nitrate, and... [Pg.114]

Oxidation. Acetaldehyde is readily oxidised with oxygen or air to acetic acid, acetic anhydride, and peracetic acid (see Acetic acid and derivatives). The principal product depends on the reaction conditions. Acetic acid [64-19-7] may be produced commercially by the Hquid-phase oxidation of acetaldehyde at 65°C using cobalt or manganese acetate dissolved in acetic acid as a catalyst (34). Liquid-phase oxidation in the presence of mixed acetates of copper and cobalt yields acetic anhydride [108-24-7] (35). Peroxyacetic acid or a perester is beheved to be the precursor in both syntheses. There are two commercial processes for the production of peracetic acid [79-21 -0]. Low temperature oxidation of acetaldehyde in the presence of metal salts, ultraviolet irradiation, or osone yields acetaldehyde monoperacetate, which can be decomposed to peracetic acid and acetaldehyde (36). Peracetic acid can also be formed directiy by Hquid-phase oxidation at 5—50°C with a cobalt salt catalyst (37) (see Peroxides and peroxy compounds). Nitric acid oxidation of acetaldehyde yields glyoxal [107-22-2] (38,39). Oxidations of /)-xylene to terephthaHc acid [100-21-0] and of ethanol to acetic acid are activated by acetaldehyde (40,41). [Pg.50]

Complexes of DMAC and many inorganic haHdes have been reported (20). These complexes are of iaterest because they catalyze a number of organic reactions. Complexes of DMAC and such heavy metal salts as NiBr2 exert a greater catalytic activity than the simple salts (21). The crystalline complex of SO and dimethylacetamide has been suggested for moderating the reaction conditions ia sulfation of leuco vat dyestuffs (22). [Pg.85]

Electrorefining. Electrolytic refining is a purification process in which an impure metal anode is dissolved electrochemicaHy in a solution of a salt of the metal to be refined, and then recovered as a pure cathodic deposit. Electrorefining is a more efficient purification process than other chemical methods because of its selectivity. In particular, for metals such as copper, silver, gold, and lead, which exhibit Htfle irreversibHity, the operating electrode potential is close to the reversible potential, and a sharp separation can be accompHshed, both at the anode where more noble metals do not dissolve and at the cathode where more active metals do not deposit. [Pg.175]

Alkyl hydroperoxides can be Hquids or soHds. Those having low molecular weight are soluble in water and are explosive in the pure state. As the molecular weight increases, ie, as the active oxygen content is reduced, water solubiUty and the violence of decomposition decrease. Alkyl hydroperoxides are stronger acids than the corresponding alcohols and have acidities similar to those of phenols, Alkyl hydroperoxides can be purified through their alkali metal salts (28). [Pg.103]

Activated carbon of high absorptive capacity is suitable for use as a catalyst it need not be treated with metallic salt or other substances. If starting materials of high purity are employed, excellent and economic catalyst efficiency is obtained. [Pg.313]

Etherification. Ethers of amyl alcohols have been prepared by reaction with ben2hydrol (63), activated aromatic haUdes (64), dehydration-addition reactions (65), addition to olefins (66—71), alkoxylation with olefin oxides (72,73) and displacement reactions involving thek alkah metal salts (74—76). [Pg.373]

The increased acidity of the larger polymers most likely leads to this reduction in metal ion activity through easier development of active bonding sites in siUcate polymers. Thus, it could be expected that interaction constants between metal ions and polymer sdanol sites vary as a function of time and the sihcate polymer size. The interaction of cations with a siUcate anion leads to a reduction in pH. This produces larger siUcate anions, which in turn increases the complexation of metal ions. Therefore, the metal ion distribution in an amorphous metal sihcate particle is expected to be nonhomogeneous. It is not known whether this occurs, but it is clear that metal ions and siUcates react in a complex process that is comparable to metal ion hydrolysis. The products of the reactions of soluble siUcates with metal salts in concentrated solutions at ambient temperature are considered to be complex mixtures of metal ions and/or metal hydroxides, coagulated coUoidal size siUca species, and siUca gels. [Pg.7]

The incorporation of metal salts of amphoteric surface active agents (Mostat Series) as internal antistatic agents in polypropylene fibers has been reported (95). Metal salts of alanine, amidoamine, and imida2oiine-type amphoteric surface-active agents show excellent performance as internal antistatic agents and also improve the dyeing abiUty of the fibers with acid dyes. [Pg.295]

The presence of metal salts, particularly those containing alkaline-earth cations and/or haUdes, cause some shifts in the polyborate equiUbria. This may result from direct interaction with the boron—oxygen species, or from changes in the activity of the solvent water (63). [Pg.195]

Nucleophilic Aromatic Substitution. An activated aromatic haUde is heated at 100—200°C with the alkaU metal salt of the nucleophile (ArOy ROy Ey CN /Cu", carbanion, etc) and the catalyst in an inert solvent (toluene, chiorohen2ene) for a few minutes to a day (21—24). [Pg.189]

Porosity and Pore Size. The support porosity is the volume of the support occupied by void space and usually is described in units of cm /g. This value represents the maximum amount of Hquid that may be absorbed into the pore stmcture, which is an especially important consideration for deposition of metal salts or other active materials on the support surface by Hquid impregnation techniques. The concentration of active material to be used in the impregnating solution is deterrnined by the support porosity and the desired level of active material loading on the catalyst. If the porosity is too low, inefficient use of the support material and reactor volume may result. If the porosity is too high, the support body may not contain sufficient soHd material to provide the strength necessary to survive catalyst manufacture and handling. [Pg.194]

Hydrogenation. Hydrogenation is one of the oldest and most widely used appHcations for supported catalysts, and much has been written in this field (55—57). Metals useflil in hydrogenation include cobalt, copper, nickel, palladium, platinum, rhenium, rhodium, mthenium, and silver, and there are numerous catalysts available for various specific appHcations. Most hydrogenation catalysts rely on extremely fine dispersions of the active metal on activated carbon, alumina, siHca-alumina, 2eoHtes, kieselguhr, or inert salts, such as barium sulfate. [Pg.199]

The active phase, which is soHd at room temperature, is comprised of mixed potassium and sodium vanadates and pyrosulfates, whereas the support is macroporous siUca, usually in the form of 6—12 mm diameter rings or pellets. The patent Hterature describes a number of ways to prepare the catalyst a typical example contains 7 wt % vanadium pentoxide, 8% potassium added as potassium hydroxide or carbonate, 1% sodium, and 78 wt % siUca, added as diatomaceous earth or siUca gel, formed into rings, and calcined in the presence of sulfur dioxide or sulfur trioxide to convert a portion of the alkah metal salts into various pyrosulfates (81,82). [Pg.203]

Table 9 gives a comparison of the antibacterial activity of a number of metal salts and nonmetals (276,277) in the form of germicidal concentrations. [Pg.136]

The catalysts used in incinerator systems for gaseous organic compound control are usually precious or base metals or metal salts. The catalysts can be supported on inert materials such as alumina (AI2O3) or ceramics. For the destruction of organic compound mixtures, a highly active but nonselective catalyst is required. ... [Pg.1258]

One important factor to consider in the preparation of the organic phase is the presence of inhibitors in the monomers. Some formulae call for the removal of inhibitors, primarily TCB, from the monomers. The TCB inhibitor forms highly colored complexes with metallic salts rendering the final product colored. Styrene has about 50 ppm of TCB. DVB, being more reactive, contains about 1000 ppm of TCB. There are several options for the removal of inhibitors. Columns packed with DOWEX MSA-1 or DOWEX 11 ion-exchange resins (Dow Chemical Company) can be used. White drierite or activated alumina also works well. [Pg.164]

The first report on metal-catalyzed asymmetric azomethine ylide cycloaddition reactions appeared some years before this topic was described for other 1,3-dipolar cycloaddition reactions [86]. However, since then the activity in this area has been very limited in spite of the fact that azomethine ylides are often stabilized by metal salts as shown in Scheme 6.40. [Pg.240]


See other pages where Active metal salts is mentioned: [Pg.278]    [Pg.274]    [Pg.338]    [Pg.137]    [Pg.62]    [Pg.51]    [Pg.167]    [Pg.490]    [Pg.171]    [Pg.278]    [Pg.274]    [Pg.338]    [Pg.137]    [Pg.62]    [Pg.51]    [Pg.167]    [Pg.490]    [Pg.171]    [Pg.208]    [Pg.175]    [Pg.348]    [Pg.475]    [Pg.287]    [Pg.7]    [Pg.89]    [Pg.232]    [Pg.240]    [Pg.244]    [Pg.464]    [Pg.296]    [Pg.174]    [Pg.196]    [Pg.354]    [Pg.190]    [Pg.320]    [Pg.297]    [Pg.9]   
See also in sourсe #XX -- [ Pg.347 ]




SEARCH



Activation of Silicon Bonds by Transition Metal Salts and Complexes

Alkali metal salts using chemical activation

Deprotonative metalation salt-activated compounds

© 2024 chempedia.info