Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activated dehydrogenation reactions

Sobering investigators uncovered a second significant breakthrough in microbial biotechnology of steroid production. They discovered that Corynebacterium simplex converted hydrocortisone (cortisol) (29) to prednisolone via a 1,2-dehydrogenation reaction. This A -3-ketosteroid is a highly active antiinflammatory commercial product (162). [Pg.430]

The Snamprogetti fluidized-bed process uses a chromium catalyst in equipment that is similar to a refinery catalytic cracker (1960s cat cracker technology). The dehydrogenation reaction takes place in one vessel with active catalyst deactivated catalyst flows to a second vessel, which is used for regeneration. This process has been commercialized in Russia for over 25 years in the production of butenes, isobutylene, and isopentenes. [Pg.368]

Membrane Reactor. Another area of current activity uses membranes in ethane dehydrogenation to shift the ethane to ethylene equiUbrium. The use of membranes is not new, and has been used in many separation processes. However, these membranes, which are mostly biomembranes, are not suitable for dehydrogenation reactions that require high temperatures. Technology has improved to produce ceramic and other inorganic (90) membranes that can be used at high temperatures (600°C and above). In addition, the suitable catalysts can be coated without blocking the pores of the membrane. Therefore, catalyst-coated membranes can be used for reaction and separation. [Pg.443]

Metals are most active when they first deposit on the catalyst. With time, they lose their initial effectiveness through continuous oxidation-reduction cycles. On average, about one third of the nickel on the equilibrium catalyst will have the activity to promote dehydrogenation reactions. [Pg.64]

Catalyst composition and feed chloride have a noticeable impact on hydrogen yield. Catalysts with an active alumina matrix tend to increase the dehydrogenation reactions. Chlorides in the feed reactivate aged nickel, resulting in high hydrogen yield. [Pg.64]

The HVCH ratio is an indicator of dehydrogenation reactions. However, the ratio is sensitive to the reactor temperature and the type of catalyst. A better indicator of nickel activity is the volume of... [Pg.64]

Vanadium also promotes dehydrogenation reactions, but less than nickel. Vanadium s contribution to hydrogen yield is 20% to 50% of nickel s contribution, but vanadium is a more severe poison. Unlike nickel, vanadium does not stay on the surface of the catalyst. Instead, it migrates to the inner (zeolite) part of the catalyst and destroys the zeolite crystal structure. Catalyst surface area and activity are permanently lost. [Pg.65]

These metals, when deposited on the E-cat catalyst, increase coke and gas-making tendencies of the catalyst. They cause dehydrogenation reactions, which increase hydrogen production and decrease gasoline yields. Vanadium can also destroy the zeolite activity and thus lead to lower conversion. The deleterious effects of these metals also depend on the regenerator temperature the rate of deactivation of a metal-laden catalyst increases as the regenerator temperature increases. [Pg.108]

A novel basic support and catalyst have been prepared by activation of aluminium phosphate with ammonia. Fine control of time and temperature allows to adjust the 0/N ratio of these oxynitride solids and thus to tune the acid-base properties. The aluminophosphate oxynitrides are active in Knoevenagel condensation, but a basicity range can not yet determined. Supporting Pt or Pt/Sn on AlPONs allows to prepare catalysts that are highly active and selective in dehydrogenation reactions. [Pg.84]

Apparent activation energies are approximately double for the dehydrogenation reaction on most types of Pt catalysts [18,74]. Therefore temperature is the most straightforward variable to control selectivity. The temperature influences selectivity because of not only thermodynamic considerations, but also the influence of temperature on coverage drastically influences selectivity. [Pg.163]

A stoichiometric dehydrogenation reaction has been utilized for the synthesis of the natural product Rhazinilam in which the key step was a platinum-mediated C-H activation, followed by P-elimination (213,214). This step is shown in Scheme 50. [Pg.311]

Skeletal (Raney ) catalysts are made by a very simple technique. An alloy of two metals in roughly equal proportions, where one metal is the desired catalytic material, and the other is dissolvable in hydroxide, is first made. This alloy is crashed and leached in concentrated hydroxide solution. The soluble metal selectively dissolves, leaving behind a highly porous spongelike structure of the desired catalytic metal. Catalysts formed by this technique show high activity and selectivity, and have found wide use in industry, particularly for hydrogenation and dehydrogenation reactions. [Pg.141]

When the membrane performs only a separation function and has no catalytic activity, two membrane properties arc of importance, the permeability and the selectivity which is given by the separation factor. In combination with a given reaction, two process parameters are of importance, the ratio of the permeation rate to the reaction rate for the faster permeating component (c.g. a reaction product such as hydrogen in a dehydrogenation reaction) and the separation factors (permselectivities) of all the other components (in particular those of the reactants) relative to the faster permeating gas. These permselectivities can be expressed as the ratios of the permeation rates of... [Pg.124]

From the outset, iridium compounds have played an important role in the better understanding of the C—H activation process, and consequently in the development of efficient alkane dehydrogenation reactions [8]. Hence, in this chapter we will review the participation of iridium complexes in the optimization of chemical processes for C—H activation which, today, have led to some highly promising... [Pg.325]


See other pages where Activated dehydrogenation reactions is mentioned: [Pg.91]    [Pg.136]    [Pg.93]    [Pg.307]    [Pg.88]    [Pg.17]    [Pg.232]    [Pg.195]    [Pg.24]    [Pg.30]    [Pg.95]    [Pg.190]    [Pg.190]    [Pg.94]    [Pg.33]    [Pg.62]    [Pg.169]    [Pg.212]    [Pg.116]    [Pg.35]    [Pg.401]    [Pg.136]    [Pg.231]    [Pg.244]    [Pg.282]    [Pg.163]    [Pg.154]    [Pg.197]    [Pg.123]    [Pg.134]    [Pg.313]    [Pg.190]    [Pg.311]    [Pg.334]    [Pg.215]    [Pg.149]    [Pg.124]   
See also in sourсe #XX -- [ Pg.279 ]




SEARCH



Activated dehydrogenative coupling reactions

Dehydrogenation activity

Dehydrogenation reaction

Dehydrogenations reactions

© 2024 chempedia.info