Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activated carbon water purification

Makeup. Makeup treatment depends extensively on the source water. Some steam systems use municipal water as a source. These systems may require dechlorination followed by reverse osmosis (qv) and ion exchange. Other systems use weUwater. In hard water areas, these systems include softening before further purification. Surface waters may require removal of suspended soHds by sedimentation (qv), coagulation, flocculation, and filtration. Calcium may be reduced by precipitation softening or lime softening. Organic contaminants can be removed by absorption on activated carbon. Details of makeup water treatment may be found in many handbooks (22—24) as well as in technical Hterature from water treatment chemical suppHers. [Pg.363]

Pharmaceuticals. Pharmaceuticals account for 6% of the Hquid-phase activated carbon consumption (74). Many antibiotics, vitarnins, and steroids are isolated from fermentation broths by adsorption onto carbon foUowed by solvent extraction and distillation (82). Other uses in pharmaceutical production include process water purification and removal of impurities from intravenous solutions prior to packaging (83). [Pg.534]

The energy requirements for desorbing 1,1-dichloroethane from activated carbon in a stripping—adsorption process for water purification have been calculated at 112 kj/kg (14). Chlorinated hydrocarbons such as 1,1-dichloroethane may easily be removed from water by air or steam stripping. [Pg.7]

Other Uses. The quantity of coal used for purposes other than combustion or processing is quite small (2,6). Coal, especially anthracite, has estabHshed markets for use as purifying and filtering agents in either the natural form or converted to activated carbon (see Carbon). The latter can be prepared from bituminous coal or coke, and is used in sewage treatment, water purification, respirator absorbers, solvent recovery, and in the food industry. Some of these markets are quite profitable and new uses are continually being sought for this material. [Pg.237]

To illustrate the use of ACF in water purification it is appropriate first to consider the experimental methods used to characterize aqueous adsorption in active carbons generally. [Pg.107]

Activated Carbon for Process Water Treatment Activated Carbon from CPL Carbon Link - Activated carbon from CPL Carbon Link for liquid and gas phase purification by adsorption. Activated carbons for all applications including chemical, water, air, solvent recovery, gold recovery, food, automotive, industrial, catalysis.. http //www.activated-carbon.com. [Pg.442]

Home Water Treatment Using Activated Carbon - Michigan State University Extension MSU Extension Water Quality Bulletins - WQ239201 07/14/97 Home Water Treatment Using Activated Carbon Introduction Activated carbon (AC) filters. Useful site for residential applications in water purification, http //www.msue.msu.edu/imp/modwq/wq2392... [Pg.443]

Solvent recovery with adsorption is most feasible when the reusable solvent is valuable and is readily separated from the regeneration agent. When steam-regenerated activated-carbon adsorption is employed, the solvent should be immiscible with water. If more than one compound is to be recycled, the compounds should be easily separated or reused as a mixture. Only very large solvent users can afford the cost of solvent purification by distillation. ... [Pg.1260]

B. 2-Methylcyclopenlane-l,3,5-trione hydrate. A mixture of 200 g. (0.89 mole) of the keto ester prepared above, 910 ml. of water, and 100 ml. of 85% phosphoric acid is healed under reflux for 4 hours and then cooled in an ice-salt bath to —5°. The trione mixed with oxalic acid separates and is collected by filtration and dried under reduced pressure. The dried material is extracted with boiling ether (250-300 ml.) under reflux, and the ethereal extract is separated from the undissolved oxalic acid. The original aqueous filtrate is also extracted with ether in a continuous extractor. The two extracts are combined, and ether is removed by distillation. The crude trione separates as a dark brown solid and is crystallized from ca. 250 ml. of hot water. The once-crystallized, faintly yellow product weighs 95-105 g. (74-82%), m.p. 70-74°. This product is used in the next step without further purification. A better specimen, m.p. 77-78°, which is almost colorless, can be obtained by recrystallization from hot water after treatment with Norit activated carbon. [Pg.84]

Stirring is continued for 2 hours at room temperature, and then methanol is added until a clear solution is obtained (ca. 10 ml. of methanol is required, and some heat is generated). When the solution has cooled, it is washed successively with 200 ml. of aqueous 2N potassium carbonate and 200 ml. of water. The aqueous phases are combined, washed with three 100-ml. portions of chloroform, and discarded. The organic phases are then combined, dried over sodium sulfate, and decolorized with activated carbon. Concentration of the chloroform solution thus obtained provides three crops of pale yellow crystals, which are washed with 30% hexane in chloroform and dried for 2 hours at 80°/0.1 mm. The total yield of 3-(2-phenyl-l,3-dithian-2-yl)indole is 22.3-25.4 g. (72-81%), m.p. 167-169° (Note 7). This material requires no further purification for use in Parts D or E. [Pg.10]

Elemental carbon has many important applications. The diamond is a precious gem, known to mankind for ages graphite is used as an electrode and has numerous other applications carbon-14 isotope is used in carbon dating and the isotope carbon-13 in tracer studies and NMR. Carbon black is used in paints, pigments and inks. Activated carbon is used as an adsorbent for purification of water and separation of gases. Coke is used for electrothermal reduction of metal oxides to their metals. These applications are discussed below in more detail. [Pg.181]

Carbon also is produced and used in other forms namely, activated carbon, carbon black, and coke, that have many commercial applications. Structurally they are amorphous forms of carbon belonging to the graphites. Activated carbon or activated charcoal has a highly porous honeycomb-like internal structure and adsorbs many gases, vapors, and colloidal solids over its very large internal surface area. Some of its major applications include purification of water and air, air analysis, waste treatment, removal of subur dioxide from stack gases, and decolorization of sugar. [Pg.182]

The first practical applications of adsorption were based on the selective removal of individual components from then- mixtures using other substances. The first filters for water treatment were installed in Europe and the United States in 1929 and 1930, respectively. Activated carbon was recognized as an efficient purification and separation material for the synthetic chemical industry in the 1940s. By the late 1960s and early 1970s, activated carbon was used in many applications for removing a broad spectrum of synthetic chemicals from water and gases. [Pg.38]

Activated carbon is an adsorbent extensively used for the purification of water and gaseous waste streams. In relation to water treatment, it is generally effective in removing large organic molecules and nonpolar compounds from water, and its use is suggested for the following compounds (EPA, 2000) ... [Pg.244]


See other pages where Activated carbon water purification is mentioned: [Pg.439]    [Pg.253]    [Pg.283]    [Pg.380]    [Pg.137]    [Pg.529]    [Pg.529]    [Pg.534]    [Pg.534]    [Pg.1498]    [Pg.1543]    [Pg.98]    [Pg.106]    [Pg.10]    [Pg.373]    [Pg.274]    [Pg.229]    [Pg.55]    [Pg.725]    [Pg.6]    [Pg.52]    [Pg.119]    [Pg.127]    [Pg.127]    [Pg.358]    [Pg.103]    [Pg.153]    [Pg.65]    [Pg.202]    [Pg.529]    [Pg.529]    [Pg.534]    [Pg.534]    [Pg.539]    [Pg.87]   
See also in sourсe #XX -- [ Pg.279 , Pg.287 ]




SEARCH



Active carbon fibers water purification

Carbonated waters

Water activation

Water active

Water activity

Water carbon)

Water purification

Water purification (activated

© 2024 chempedia.info