Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile, hydrolysis

Acrylic acid is made by the oxidation of propylene to acrolein and further oxidation to acrylic acid. Another common method of production is acrylonitrile hydrolysis. [Pg.225]

A new development is a bioprocess for the hydrolysis of aciylonitrile to ammonium acrylate, which is a key component of polymers used in products as diverse as paints, dyes, cosmetics, plastics, papers and even disposable nappies. The big advantage of the bioprocess is that acrylonitrile hydrolysis would otherwise be very energy intensive. [Pg.155]

Total syntheses of this group also include the synthesis of 11-oxo-steroids described in the patent literature [1066] (Scheme 118). The starting material used was the cyanoester (413) formed by the condensation of acetoacetic and cyanoacetic esters. The successive addition of hydrogen cyanide and acrylonitrile, hydrolysis, decarboxylation, and esterification of the product led to the tetraester (414). Dieckmann condensation, hydrolysis, decarboxylation, and esterification gave the monocyclic... [Pg.304]

The addition of active methylene compounds (ethyl malonate, ethyl aoeto-acetate, ethyl plienylacetate, nltromethane, acrylonitrile, etc.) to the aP-double bond of a conjugated unsaturated ketone, ester or nitrile In the presence of a basic catalyst (sodium ethoxide, piperidine, diethylamiiie, etc.) is known as the Michael reaction or Michael addition. The reaction may be illustrated by the addition of ethyl malonate to ethyl fumarate in the presence of sodium ethoxide hydrolysis and decarboxylation of the addendum (ethyl propane-1 1 2 3-tetracarboxylate) yields trlcarballylic acid ... [Pg.912]

Even ia 1960 a catalytic route was considered the answer to the pollution problem and the by-product sulfate, but nearly ten years elapsed before a process was developed that could be used commercially. Some of the eadier attempts iacluded hydrolysis of acrylonitrile on a sulfonic acid ion-exchange resia (69). Manganese dioxide showed some catalytic activity (70), and copper ions present ia two different valence states were described as catalyticaHy active (71), but copper metal by itself was not active. A variety of catalysts, such as Umshibara or I Jllmann copper and nickel, were used for the hydrolysis of aromatic nitriles, but aUphatic nitriles did not react usiag these catalysts (72). Beginning ia 1971 a series of patents were issued to The Dow Chemical Company (73) describiag the use of copper metal catalysis. Full-scale production was achieved the same year. A solution of acrylonitrile ia water was passed over a fixed bed of copper catalyst at 85°C, which produced a solution of acrylamide ia water with very high conversions and selectivities to acrylamide. [Pg.135]

The heat of hydration is approximately —70 kj /mol (—17 kcal/mol). This process usually produces no waste streams, but if the acrylonitrile feed contains other nitrile impurities, they will be converted to the corresponding amides. Another reaction that is prone to take place is the hydrolysis of acrylamide to acryhc acid and ammonia. However, this impurity can usually be kept at very low concentrations. American Cyanamid uses a similar process ia both the United States and Europe, which provides for their own needs and for sales to the merchant market. [Pg.135]

Although some very minor manufacturers of acryhc acid may still use hydrolysis of acrylonitrile (see below), essentially all other plants woddwide use the propylene oxidation process. [Pg.155]

Acrylonitrile Route. This process, based on the hydrolysis of acrylonitrile (79), is also a propylene route since acrylonitrile (qv) is produced by the catalytic vapor-phase ammoxidation of propylene. [Pg.155]

The yield of acrylonitrile based on propylene is generally lower than the yield of acryhc acid based on the dkect oxidation of propylene. Hence, for the large volume manufacture of acrylates, the acrylonitrile route is not attractive since additional processing steps are involved and the ultimate yield of acrylate based on propylene is much lower. Hydrolysis of acrylonitrile can be controUed to provide acrylamide rather than acryhc acid, but acryhc acid is a by-product in such a process (80). [Pg.155]

The sulfuric acid hydrolysis may be performed as a batch or continuous operation. Acrylonitrile is converted to acrylamide sulfate by treatment with a small excess of 85% sulfuric acid at 80—100°C. A hold-time of about 1 h provides complete conversion of the acrylonitrile. The reaction mixture may be hydrolyzed and the aqueous acryhc acid recovered by extraction and purified as described under the propylene oxidation process prior to esterification. Alternatively, after reaction with excess alcohol, a mixture of acryhc ester and alcohol is distilled and excess alcohol is recovered by aqueous extractive distillation. The ester in both cases is purified by distillation. [Pg.155]

Calcium carbide has been used in steel production to lower sulfur emissions when coke with high sulfur content is used. The principal use of carbide remains hydrolysis for acetylene (C2H2) production. Acetylene is widely used as a welding gas, and is also a versatile intermediate for the synthesis of many organic chemicals. Approximately 450,000 t of acetylene were used aimuaHy in the early 1960s for the production of such chemicals as acrylonitrile, acrylates, chlorinated solvents, chloroprene, vinyl acetate, and vinyl chloride. Since then, petroleum-derived olefins have replaced acetylene in these uses. [Pg.166]

The principal monomer is acrylamide [79-06-17, where R = H and R = NH2, made by the hydrolysis of acrylonitrile. The homopolymer [9003-05-8] of acrylamide, which in theory has no electrical charge, has some use as a flocculant however, the majority of acrylamide-based flocculants are copolymers with acryHc monomers containing charged functional groups, such as those shown in Figure 1, or polymers containing functional groups formed by modification of acrylamide homopolymers or copolymers (Fig. 2). The chemistry of polyacrylamides has been reviewed by several authors (18—20) (see... [Pg.32]

Also, Michael addition reactions occur between Ai-acylaminomalonic acid esters and unsaturated compounds, ie, acrolein [107-02-8] acrylonitrile [107-13-1y, acryhc acid esters, and amino acids result from hydrolysis of the addition products. [Pg.277]

Reaction of olefin oxides (epoxides) to produce poly(oxyalkylene) ether derivatives is the etherification of polyols of greatest commercial importance. Epoxides used include ethylene oxide, propylene oxide, and epichl orohydrin. The products of oxyalkylation have the same number of hydroxyl groups per mole as the starting polyol. Examples include the poly(oxypropylene) ethers of sorbitol (130) and lactitol (131), usually formed in the presence of an alkaline catalyst such as potassium hydroxide. Reaction of epichl orohydrin and isosorbide leads to the bisglycidyl ether (132). A polysubstituted carboxyethyl ether of mannitol has been obtained by the interaction of mannitol with acrylonitrile followed by hydrolysis of the intermediate cyanoethyl ether (133). [Pg.51]

The hydrolysis of nitriles can be carried out with either isolated enzymes or immobilized cells. Eor example, resting cells of P. chlororaphis can accumulate up to 400 g/L of acrylamide in 8 h, provided acrylonitrile is added gradually to avoid nitrile hydratase inhibition (116). The degree of acrylonitrile conversion to acrylamide is 99% without any formation of acryUc acid. Because of its high efficiency the process has been commercialized and currentiy is used by Nitto Chemical Industry Co. on a multithousand ton scale. [Pg.344]

The enamines derived from cyclic ketones give the normal alkylated products, although there is some evidence that unstable cycloadducts are initially formed (55b). Thus the enamine (28) derived from cyclohexanone and pyrrolidine on reaction with acrylonitrile, acrylate esters, or phenyl vinyl sulfone gave the 2-alkylated cyclohexanones (63) on hydrolysis of the intermediates (31,32,55,56). These additions are sensitive to the polarity of the solvent. Thus (28) in benzene or dioxane gave an 80% yield of the... [Pg.127]

Kondrat eva pyridine synthesis. This methodology to pyridine rings continues to be applied in total synthesis. An approach to the antitumor compound ellipticine 34 ° makes use of a Diels-Alder reaction of acrylonitrile and oxazole 32 to form pyridiyl derivative 33. Addition of methyllithium and hydrolysis transforms 33 into 34. [Pg.329]

Electrochemical reduction of oxazolinium salts 36 gives the anions 37, which add efficiently to alkyl halides or, in the presence of McsSiCl, to methyl acrylate, methyl vinyl ketone, and acrylonitrile. Simple acid hydrolysis then gives the ketone products 38 and 39, and this method is quite general since the starting salts are readily prepared from carboxylic acids, R C02H (87TL4411). [Pg.94]

Attachment of a basic amino group to the side chain leads to a compound with antiparkinsonian activity. Alkylation of the carbanion from phenylacetonitrile with 2-chlorotriethylamine affords the product, 36. Conjugate addition of the anion from this to acrylonitrile gives the glutarodinitrile (37). Partial hydrolysis of this in a mixture of sulfuric and acetic acid leads to phenglutarimide (38). ... [Pg.257]

Radical copolymerization is used in the manufacturing of random copolymers of acrylamide with vinyl monomers. Anionic copolymers are obtained by copolymerization of acrylamide with acrylic, methacrylic, maleic, fu-maric, styrenesulfonic, 2-acrylamide-2-methylpro-panesulfonic acids and its salts, etc., as well as by hydrolysis and sulfomethylation of polyacrylamide Cationic copolymers are obtained by copolymerization of acrylamide with jV-dialkylaminoalkyl acrylates and methacrylates, l,2-dimethyl-5-vinylpyridinum sulfate, etc. or by postreactions of polyacrylamide (the Mannich reaction and Hofmann degradation). Nonionic copolymers are obtained by copolymerization of acrylamide with acrylates, methacrylates, styrene derivatives, acrylonitrile, etc. Copolymerization methods are the same as the polymerization of acrylamide. [Pg.69]

Acrylonitrile is mainly used to produce acrylic fibers, resins, and elastomers. Copolymers of acrylonitrile with butadiene and styrene are the ABS resins and those with styrene are the styrene-acrylonitrile resins SAN that are important plastics. The 1998 U.S. production of acrylonitrile was approximately 3.1 billion pounds. Most of the production was used for ABS resins and acrylic and modacrylic fibers. Acrylonitrile is also a precursor for acrylic acid (by hydrolysis) and for adiponitrile (by an electrodimerization). [Pg.219]

The second group includes SAHs obtained by radical grafting of acrylonitrile (AN) on natural polymers, mostly starch, under the action of cerium initiators [43 -46, 50, 51], The proper crosslinked hydrophilic polymer is formed at the stage of alkali hydrolysis of grafted polyacrylonitrile (PAN), the final characteristics depending on many factors, in particular the sort of starch [46], the methods of its preparation [51], the component ratio, etc. The nature of starch is exhibited through... [Pg.104]

Lipases are the enzymes for which a number of examples of a promiscuous activity have been reported. Thus, in addition to their original activity comprising hydrolysis of lipids and, generally, catalysis of the hydrolysis or formation of carboxylic esters [107], lipases have been found to catalyze not only the carbon-nitrogen bond hydrolysis/formation (in this case, acting as proteases) but also the carbon-carbon bond-forming reactions. The first example of a lipase-catalyzed Michael addition to 2-(trifluoromethyl)propenoic acid was described as early as in 1986 [108]. Michael addition of secondary amines to acrylonitrile is up to 100-fold faster in the presence of various preparations of the hpase from Candida antariica (CAL-B) than in the absence of a biocatalyst (Scheme 5.20) [109]. [Pg.113]

There are two pathways for the degradation of nitriles (a) direct formation of carboxylic acids by the activity of a nitrilase, for example, in Bacillus sp. strain OxB-1 and P. syringae B728a (b) hydration to amides followed by hydrolysis, for example, in P. chlororaphis (Oinuma et al. 2003). The monomer acrylonitrile occurs in wastewater from the production of polyacrylonitrile (PAN), and is hydrolyzed by bacteria to acrylate by the combined activity of a nitrilase (hydratase) and an amidase. Acrylate is then degraded by hydration to either lactate or P-hydroxypropionate. The nitrilase or amidase is also capable of hydrolyzing the nitrile group in a number of other nitriles (Robertson et al. 2004) including PAN (Tauber et al. 2000). [Pg.322]

S (2)-hydroxy-3-butenenitrile from acrolein and HCN trans hydrocyanation using, for instance, acetone cyanohydrin Hydrolysis of nitriles to amides, e.g. acrylonitrile to acrylamide Isomerization of glucose to fructose Esterifications and transesterifications Interesterify positions 1 and 3 of natural glycerides Oxidation of glucose to gluconic acid, glycolic acid to glyoxalic acid... [Pg.158]


See other pages where Acrylonitrile, hydrolysis is mentioned: [Pg.76]    [Pg.195]    [Pg.7177]    [Pg.124]    [Pg.52]    [Pg.76]    [Pg.195]    [Pg.7177]    [Pg.124]    [Pg.52]    [Pg.151]    [Pg.181]    [Pg.182]    [Pg.312]    [Pg.494]    [Pg.361]    [Pg.421]    [Pg.89]    [Pg.419]    [Pg.95]    [Pg.104]    [Pg.219]    [Pg.144]    [Pg.131]   
See also in sourсe #XX -- [ Pg.283 , Pg.284 ]




SEARCH



© 2024 chempedia.info