Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylic polymers derivatives

Resin and Polymer Solvent. Dimethylacetamide is an exceUent solvent for synthetic and natural resins. It readily dissolves vinyl polymers, acrylates, ceUulose derivatives, styrene polymers, and linear polyesters. Because of its high polarity, DMAC has been found particularly useful as a solvent for polyacrylonitrile, its copolymers, and interpolymers. Copolymers containing at least 85% acrylonitrile dissolve ia DMAC to form solutions suitable for the production of films and yams (9). DMAC is reportedly an exceUent solvent for the copolymers of acrylonitrile and vinyl formate (10), vinylpyridine (11), or aUyl glycidyl ether (12). [Pg.85]

Acrylic Polymers. Although considerable information on the plasticization of acryUc resins is scattered throughout journal and patent hterature, the subject is compHcated by the fact that acryUc resins constitute a large family of polymers rather than a single polymeric species. An infinite variation in physical properties may be obtained through copolymerization of two or more acryUc monomers selected from the available esters of acryUc and methacryhc acid (30) (see Acrylic esterpolya rs Methacrylic acid and derivatives). [Pg.129]

Poly(methyl methacrylate) (Figure 15.1, I) is, commercially, the most important member of a range of acrylic polymers which may be considered structurally as derivatives of acrylic acid (II). [Pg.398]

The development of monoalkyl phosphate as a low skin irritating anionic surfactant is accented in a review with 30 references on monoalkyl phosphate salts, including surface-active properties, cutaneous effects, and applications to paste and liquid-type skin cleansers, and also phosphorylation reactions from the viewpoint of industrial production [26]. Amine salts of acrylate ester polymers, which are physiologically acceptable and useful as surfactants, are prepared by transesterification of alkyl acrylate polymers with 4-morpholinethanol or the alkanolamines and fatty alcohols or alkoxylated alkylphenols, and neutralizing with carboxylic or phosphoric acid. The polymer salt was used as an emulsifying agent for oils and waxes [70]. Preparation of pharmaceutical liposomes with surfactants derived from phosphoric acid is described in [279]. Lipid bilayer vesicles comprise an anionic or zwitterionic surfactant which when dispersed in H20 at a temperature above the phase transition temperature is in a micellar phase and a second lipid which is a single-chain fatty acid, fatty acid ester, or fatty alcohol which is in an emulsion phase, and cholesterol or a derivative. [Pg.611]

In general and as expected, brighteners of relatively small molecular size are most suitable for application by exhaustion. Less volatile compounds of larger molecular size tend to be preferred for pad-thermosol application or for incorporation in the polymer mass. Commercially important for exhaust application are the previously mentioned pyrene derivative 11.22, the naphthalimide 11.23, the bis(benzoxazolyl)ethene 11.35, the bis (benzoxazolyl) thiophene 11.36, the distyrylbenzene 11.37 and the stilbene bis (acrylic ester) derivative 11.38. Products of the 11.35 type show excellent light fastness but only moderate fastness to sublimation. In view of this volatility they can be used in the transfer printing of polyester. [Pg.327]

Kusonwiriyawong C, van de Wetering P, Hubbell JA et al (2003) Evaluation of pH-dependent membrane-disruptive properties of poly(acrylic acid) derived polymers. Eur J Pharm Biopharm 56 237-246... [Pg.62]

Many polymers have been studied for their usefulness in producing pharmacologically active complexes with proteins or drugs. Synthetic and natural polymers such as polysaccharides, poly(L-lysine) and other poly(amino acids), poly(vinyl alcohols), polyvinylpyrrolidinones, poly(acrylic acid) derivatives, various polyurethanes, and polyphosphazenes have been coupled to with a diversity of substances to explore their properties (Duncan and Kopecek, 1984 Braatz et al., 1993). Copolymer preparations of two monomers also have been tried (Nathan et al., 1993). [Pg.936]

Herein we present the synthesis of two series of fluorinated acrylate polymers and copolymers derived from commercially available hexafluoro-2-hydroxy-2(4-fluorophenyl)propane. The solubility, film-forming ability, thermal stability, and water absorption in these polymers have been studied. [Pg.20]

The failure in increasing residence time of mucoadhesive systems in the human intestinal tract has led scientists to the evaluation of multifunctional mucoadhesive polymers. Research in the area of mucoadhesive drug delivery systems has shed light on other properties of some of the mucoadhesive polymers. One important class of mucoadhesive polymers, poly(acrylic acid) derivatives, has been identified as potent inhibitors of proteolytic enzymes [72-74]. The interaction between various types of mucoadhesive polymers and epithelial cells has a direct influence on the permeability of mucosal epithelia by means of changing the gating properties of the tight jrmctions. More than being only adhesives, some mucoadhesive polymers can therefore be considered as a novel class of multifunctional macromolecules with a number of desirable properties for their use as delivery adjuvants [72,75]. [Pg.184]

Two of the main considerations in the development of totally reactive liquid photopolymer systems are the resin(s) and the reactive diluents (monomers). The resins play a major role in determining the end properties and therefore the applications of the cured polymer. The reactive diluents are used to provide a fully reactive system with the appropriate reactivity, viscosity, coatability before cure and the desired crosslink density, chemical resistance and dielectric character once it is cured. The pho-toreactive monomers most commonly used are acrylate based derivatives because of the properties they impart, and their high reactivity and wide solubility range. [Pg.439]

Seki and Tirrell [436] studied the pH-dependent complexation of poly(acrylic acid) derivatives with phospholipid vesicle membranes. These authors found that polyfacrylic acid), poly(methacrylic arid) and poly(ethacrylic acid) modify the properties of a phospholipid vesicle membrane. At or below a critical pH the polymers complex with the membrane, resulting in broadening of the melting transition. The value of the critical pH depends on the chemical structure and tacticity of the polymer and increases with polymer hydro-phobicity from approximately 4.6 for poly(acrylic acid) to approximately 8 for poly(ethacrylic acid). Subsequent photophysical and calorimetric experiments [437] and kinetic studies [398] support the hypothesis that these transitions are caused by pH dependent adsorption of hydrophobic polymeric carboxylic acids... [Pg.35]

Systematic research on the polymerization of optically active monomers and on polymers derived therefrom, has been mostly carried out with a-olefins, vinyl-ethers and acrylic derivatives. [Pg.410]

Suspension polymerization also is used When acrylic monomers or their mixtures with other monomers are polymerized while suspended (usually in aqueous system), the polymeric product is obtained m the form of small beads, sometimes called pearls or granules. Bead polymers are the basis of the production of molding powders and denture materials. Polymers derived from acrylic or methacrylic acid furnish exchange resins of the carboxylic acid type. Solutions in organic solvents furnish lacquers, coatings and cements, while water-soluble hydrolysates are used as thickeners, adhesives, and sizes. [Pg.17]

Levulinic acid is formed by the treatment of six-carbon sugar carbohydrates from starch or lignocellulosics with acids, or by add treatment plus a reductive step of five-carbon sugars derived from hemicellulose. Levulinic add can serve as a building block for the synthesis of many derivatives of interest may be the selective oxidation to succinic and acrylic add. [i-Acetylacrylic add could be used in the production of new acrylate polymers. [Pg.320]

The Study to COmpare REstenosis rate between QueSt and QuaDDS-QP2 trial was designed to control neointimal proliferation through prolonged high-dose (800 (Xg) delivery of the paclitaxel derivative 7-hexanoyltaxol (QP2) via acrylate polymer membranes on the QuaDDS stent (Quanam Medical, Santa Clara, California, U.S.A.) (64). Despite a potential antirestenotic effect, enrollment in the trial was terminated early, due to an unacceptable safety profile, as... [Pg.308]

Interest in detergent products derived from renewable resources and with better biodegradability has driven evaluation of oxidized sugars and starches as builders or co-builders in detergents.113 Builders and co-builders complex calcium and magnesium ions in hard water to prevent sealing or deposits due to precipitation of insoluble carbonate salts. In current powder detergents, the builders are usually zeolites used in combination with polycarboxylate polymers derived from synthetic acrylic-maleic acid copolymers.114... [Pg.639]

Acrylic—Refers to monomers or polymers of acrylic acid (CH2=CHC02H) and its derivatives. Poly(butyl acrylate), poly(methyl methacrylate), polyacrylamide, and polyacrylonitrile are acrylic polymers. [Pg.257]


See other pages where Acrylic polymers derivatives is mentioned: [Pg.148]    [Pg.499]    [Pg.498]    [Pg.14]    [Pg.133]    [Pg.182]    [Pg.8]    [Pg.687]    [Pg.29]    [Pg.145]    [Pg.361]    [Pg.125]    [Pg.114]    [Pg.287]    [Pg.124]    [Pg.250]    [Pg.521]    [Pg.515]    [Pg.81]    [Pg.423]    [Pg.89]    [Pg.82]    [Pg.250]    [Pg.653]    [Pg.54]    [Pg.18]    [Pg.34]    [Pg.76]    [Pg.192]    [Pg.127]   


SEARCH



Acryl Polymers

Acrylic polymers

Other polymers of acrylic acid derivatives

Polymer derivs

Polymers acrylic polymer

Polymers and Copolymers Derived from Poly(Acrylic Acid)

© 2024 chempedia.info