Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylic cross-linkers

Poly(acrylic acid) and Poly(methacrylic acid). Poly(acryHc acid) (8) (PAA) may be prepared by polymerization of the monomer with conventional free-radical initiators using the monomer either undiluted (36) (with cross-linker for superadsorber appHcations) or in aqueous solution. Photochemical polymerization (sensitized by benzoin) of methyl acrylate in ethanol solution at —78° C provides a syndiotactic form (37) that can be hydrolyzed to syndiotactic PAA. From academic studies, alkaline hydrolysis of the methyl ester requires a lower time than acid hydrolysis of the polymeric ester, and can lead to oxidative degradation of the polymer (38). Po1y(meth acrylic acid) (PMAA) (9) is prepared only by the direct polymerization of the acid monomer it is not readily obtained by the hydrolysis of methyl methacrylate. [Pg.317]

FIGURE 3.5 Fourier Transform infrared (FTIR) spectra of acrylic rubber (ACM)-siUca hybrid nanocomposites. The numbers after ACM (10 and 50) indicate the wt% tetraethoxysilane (TEOS) concentration. The letters preceding the numbers indicate the ACM-silica samples cross-linked from benzoyl peroxide (B) and a mixed cross-linker hexamethylene diamine carbamate and ammonium benzoate (D). The numbers over the absorption peaks are the wave numbers corresponding to absorbance of those peaks. (From Bandyopadhyay, A., Bhowmick, A.K., and De Sarkar, M., J. Appl. Polym. Sci., 93, 2579, 2004. Courtesy of Wiley InterScience.)... [Pg.64]

The use of y-ray induced radical pol5unerization proved to be a successful alternative for the radical co-polymer-ization of metal complexes with ligands containing acrylic C—C double bonds [100-102,129,130]. In particular, the palladium(II) complex cw-[PdCl2(ICPA)2] (1, Scheme 4) was co-polymerized in DMF solution with DMA and MBAA (cross-linker, 4% mol), with no degradation of the metal center [100,101]. [Pg.216]

One-part clear acrylic latex sealant formulation, 22 42t One-part manganese dioxide-cured polysulfide formulation, 22 4 It One-part pigmented siliconized acrylic latex sealant, 22 42t One-part RTV silicones, 22 596 One-part silicone cross-linkers, 22 33t One-part silicone sealant formulation, 22 34t... [Pg.647]

Molecular imprinted polymers MIPs exhibit predetermined enan-tioselectivity for a specific chiral molecnle, which is nsed as the chiral template dnring the imprinting process. Most MIPs are obtained by copolymerization from a mixture consisting of a fnnctional mono-nnsatn-rated (vinylic, acrylic, methacrylic) monomer, a di- or tri-nnsatnrated cross-linker (vinylic, acrylic, methacrylic), a chiral template (print molecnle) and a porogenic solvent to create a three-dimensional network. When removing the print molecnle, chiral cavities are released within the polymer network. The MIP will memorize the steric and functional binding featnres of the template molecnle. Therefore, inclusion of the enantiomers into the asymmetric cavities of this network can be assumed as... [Pg.477]

The main feature of (meth)acrylate-based support materials is the broad diversity of monomers that is commercially available and that can thus can be used for the fabrication of monoliths. The resulting (meth)acrylate monoliths consequently cover a wide spectrum of surface chemistries and properties. The scope of monomers includes hydrophobic, hydrophilic, ionizable, chiral, as well as reactive (meth)acrylate building blocks [53]—the most popular being mixtures of butyl methacrylate and ethylene dimethacrylate (BMA/EDMA) or glycidyl methacrylate and ethylene dimethacrylate (GMA/EDMA) as cross-linker. [Pg.7]

Methacrylate monoliths have been fabricated by free radical polymerization of a number of different methacrylate monomers and cross-linkers [107,141-163], whose combination allowed the creation of monolithic columns with different chemical properties (RP [149-154], HIC [158], and HILIC [163]) and functionalities (lEX [141-153,161,162], IMAC [143], and bioreactors [159,160]). Unlike the fabrication of styrene monoliths, the copolymerization of methacrylate building blocks can be accomplished by thermal [141-148], photochemical [149-151,155,156], as well as chemical [154] initiation. In addition to HPLC, monolithic methacrylate supports have been subjected to numerous CEC applications [146-148,151]. Acrylate monoliths have been prepared by free radical polymerization of various acrylate monomers and cross-linkers [164-172]. Comparable to monolithic methacrylate supports, chemical [170], photochemical [164,169], as well as thermal [165-168,171,172] initiation techniques have been employed for fabrication. The application of acrylate polymer columns, however, is more focused on CEC than HPLC. [Pg.30]

Poly(acrylic acid) and Poly(rnethacrylic acid). Poly(acrylic acid) (PAA) may be prepared by polymerization of the monomer with conventional free-radical initiators using the monomer either undiluted (widi cross-linker for superadsorber applications) or in aqueous solution. Photochemical polymerization (sensitized by benzoin) of methyl acrylate in ethanol solution at —78°C provides a syndiotactic form that can be hydrolyzed to syndiotactic PAA. [Pg.1738]

Formulations for acrylic copolymers involve monomers such as acrylic acid [79-10-7], methacrylic acid [79-144], or esters of these acids. Formation of a copolymer from a methylmethacrylate ester (3), where DVB serves as the cross-linker, gives the structures ... [Pg.373]

Liquid fluorocarbon was used as continuous phase by Perez-Moral and Mayes [19] as well. They proposed a new method for rapid synthesis of MIP beads, in that they prepared 36 polymers imprinted for propranolol and morphine with different amounts of EDMA as a cross-linker and different functional monomers (MAA, acrylic acid, hydroxyethyl methacrylate, 4-vinylpyridine) directly in SPE cartridges. The properties of MIP microspheres prepared by this method were very similar in terms of size, morphology and extent of rebinding to microspheres prepared by conventional suspension polymerisation in perfluorocarbons as well as to bulk polymers prepared in the same solvent. The most notable advantages of this method are no waste production (no transfer of beads during washing steps) and possible direct use for a variety of screening, evaluation and optimisation experiments. [Pg.34]

A multi-MIP array has been fabricated photolithographic ally for determination of an albuterol broncholidator (Table 6) [185]. 20-pm diameter acrylic MIP beads have been synthesized by co-polymerization of the benzyl methacrylate functional monomer, MAA functional monomer and HEMA cross-linker in the propylene glycol monomethyl ether acetate porogenic solvent. Thermo-radical polymerization on a Pt electrode was initiated by AIBN. Albuterol was recognized in the... [Pg.249]

The sample material was a hydrogel, that was made out of 11 g acrylic acid monomer (AA), 11 g acrylamide monomer (AAm), 100 g water (H20), 0.5 g cross linker MB AAm (N,N -methylenebisacrylamide) and 0.1 g of the initialisators (NH4)2S20g and K2S2O5. The solution was neutralised by 6.2 g NaOH. The constituents were put in a test tube where they react with each other as described by de Heus [3]. After the reactions between the components stopped, the material was submerged in a 0.15 molar NaCl-solution for one or two days. Then, the hydrogel was put in a cup filled with a 0.15 molar NaCl solution and was stored at room temperature. [Pg.134]

In addition to forming the chains of polyacrylate, the chains are cross-linked. This is a process in which two or more chains are held together by other compounds in a network. Typical cross-linkers for this polymer include di- and tri-acrylate esters. The swelling and elasticity of the polyacrylate polymer depends on the structure of this network and the number of cross-links. The swelling capacity of the polymer decreases with increased cross-link density. After formation, the polyacrylate is dried and formed into microparticles of irregular shape that can be stored for a long time. [Pg.19]

The clear-coat is referred to as a two-component (2K) clear-coat when isocyanate is used as the cross-linker. The isocyanate must be added to the hydroxy functional acrylic just prior to spray application to prevent premature cross-linking (or gelation). For this reason, the two-part mixing is referred to as 2K. Cure conditions for isocyanate-cured clear-coat range from room temperature (car refinish) to 250°F for 30 min. [Pg.1302]

Small amounts of specially functionalized monomers are often copolymerized with acrylic monomers in order to modify or improve the properties of the polymer. These functional monomers can bring about improvements either directly or by providing sites for further reaction with metal ions, cross-linkers, or other compounds and resins. Table 9 lists some of the more common functional monomers used in the preparation of acrylic copolymers. [Pg.166]

Binders for thermosetting powder coatings are often called a hardener. The hardeners are a mixture of a primary resin and a cross-linker. The major types of binders can be limited to polyester, epoxy, hybrid epoxypolyester, acrylic, and UV cure types. Polyester binders are used for good exterior durability, retention of gloss, and resistance to chalking. [Pg.244]


See other pages where Acrylic cross-linkers is mentioned: [Pg.89]    [Pg.3211]    [Pg.108]    [Pg.341]    [Pg.89]    [Pg.3211]    [Pg.108]    [Pg.341]    [Pg.228]    [Pg.530]    [Pg.469]    [Pg.491]    [Pg.492]    [Pg.499]    [Pg.131]    [Pg.35]    [Pg.80]    [Pg.250]    [Pg.311]    [Pg.314]    [Pg.314]    [Pg.46]    [Pg.94]    [Pg.193]    [Pg.683]    [Pg.350]    [Pg.526]    [Pg.198]    [Pg.1302]    [Pg.1774]    [Pg.165]    [Pg.233]    [Pg.172]    [Pg.228]    [Pg.32]   
See also in sourсe #XX -- [ Pg.292 , Pg.293 , Pg.294 ]




SEARCH



Cross-linker

© 2024 chempedia.info