Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerizations, anionic acrylates

The addition of alcohols to form the 3-alkoxypropionates is readily carried out with strongly basic catalyst (25). If the alcohol groups are different, ester interchange gives a mixture of products. Anionic polymerization to oligomeric acrylate esters can be obtained with appropriate control of reaction conditions. The 3-aIkoxypropionates can be cleaved in the presence of acid catalysts to generate acrylates (26). Development of transition-metal catalysts for carbonylation of olefins provides routes to both 3-aIkoxypropionates and 3-acryl-oxypropionates (27,28). Hence these are potential intermediates to acrylates from ethylene and carbon monoxide. [Pg.151]

Despite numerous efforts, there is no generally accepted theory explaining the causes of stereoregulation in acryflc and methacryflc anionic polymerizations. Complex formation with the cation of the initiator (146) and enoflzation of the active chain end are among the more popular hypotheses (147). Unlike free-radical polymerizations, copolymerizations between acrylates and methacrylates are not observed in anionic polymerizations however, good copolymerizations within each class are reported (148). [Pg.170]

A brief review has appeared covering the use of metal-free initiators in living anionic polymerizations of acrylates and a comparison with Du Font s group-transfer polymerization method (149). Tetrabutylammonium thiolates mn room temperature polymerizations to quantitative conversions yielding polymers of narrow molecular weight distributions in dipolar aprotic solvents. Block copolymers are accessible through sequential monomer additions (149—151) and interfacial polymerizations (152,153). [Pg.170]

Unlike ftee-tadical polymerizations, copolymerizations between acrylates and methacrylates ate not observed in anionic polymerizations however, good copolymerizations within each class ate reported (99). [Pg.269]

Group-Transfer Polymerization. Du Pont has patented (29) a technique known as group-transfer polymerization and appHed it primarily to the polymerization of acrylates and methacrylates. It is mechanistically similar to anionic polymerization, giving living chains, except that chain transfer can occur (30). [Pg.437]

Acrylic esters can be polymerized by a number of routes. Anionic polymerization gives the narrow standards used primarily for calibration, but is not used on an industrial/commercial scale. Free-radical polymerization is the dominant mode of polymerization for making these polymers on an industrial scale. Significant volumes of polymer are made by both solution polymerization... [Pg.539]

To be eligible to living anionic polymerization a vinylic monomer should carry an electron attracting substituent to induce polarization of the unsaturation. But it should contain neither acidic hydrogen, nor strongly electrophilic function which could induce deactivation or side reactions. Typical examples of such monomers are p-aminostyrene, acrylic esters, chloroprene, hydroxyethyl methacrylate (HEMA), phenylacetylene, and many others. [Pg.149]

The controlled polymerization of (meth)acrylates was achieved by anionic polymerization. However, special bulky initiators and very low temperatures (- 78 °C) must be employed in order to avoid side reactions. An alternative procedure for achieving the same results by conducting the polymerization at room temperature was proposed by Webster and Sogah [84], The technique, called group transfer polymerization, involves a catalyzed silicon-mediated sequential Michael addition of a, /f-unsaluralcd esters using silyl ketene acetals as initiators. Nucleophilic (anionic) or Lewis acid catalysts are necessary for the polymerization. Nucleophilic catalysts activate the initiator and are usually employed for the polymerization of methacrylates, whereas Lewis acids activate the monomer and are more suitable for the polymerization of acrylates [85,86]. [Pg.50]

Double hydrophilic star-block (PEO-fo-PAA)3 copolymers were prepared by a combination of anionic and ATRP of EO and fBuA [150]. Three-arm PEO stars, with terminal - OH groups were prepared by anionic polymerization, using l,l,l-tris(hydroxymethyl)ethane, activated with DPMK as a trifunctional initiator. The hydroxyl functions were subsequently transformed to three bromo-ester groups, which were utilized to initiate the polymerization of f-butyl acrylate by ATRP in the presence of CuBr/PMDETA. Subsequent hydrolysis of the f-butyl groups yielded the desired products (Scheme 74). [Pg.86]

Organolithium-(—)-sparteine complexes have been used to initiate the anionic polymerization of acrylates and styrenes. ... [Pg.1150]

Alkyl derivatives of the alkaline-earth metals have also been used to initiate anionic polymerization. Organomagnesium compounds are considerably less active than organolithiums, as a result of the much less polarized metal-carbon bond. They can only initiate polymerization of monomers more reactive than styrene and 1,3-dienes, such as 2- and 4-vinylpyridines, and acrylic and methacrylic esters. Organostrontium and organobarium compounds, possessing more polar metal-carbon bonds, are able to polymerize styrene and 1,3-dienes as well as the more reactive monomers. [Pg.413]

Penultimate effects have been observed for many comonomer pairs. Among these are the radical copolymerizations of styrene-fumaronitrile, styrene-diethyl fumarate, ethyl methacrylate-styrene, methyl methacrylate l-vinylpyridine, methyl acrylate-1,3-butadiene, methyl methacrylate-methyl acrylate, styrene-dimethyl itaconate, hexafluoroisobutylene-vinyl acetate, 2,4-dicyano-l-butene-isoprene, and other comonomer pairs [Barb, 1953 Brown and Fujimori, 1987 Buback et al., 2001 Burke et al., 1994a,b, 1995 Cowie et al., 1990 Davis et al., 1990 Fordyce and Ham, 1951 Fukuda et al., 2002 Guyot and Guillot, 1967 Hecht and Ojha, 1969 Hill et al., 1982, 1985 Ma et al., 2001 Motoc et al., 1978 Natansohn et al., 1978 Prementine and Tirrell, 1987 Rounsefell and Pittman, 1979 Van Der Meer et al., 1979 Wu et al., 1990 Yee et al., 2001 Zetterlund et al., 2002]. Although ionic copolymerizations have not been as extensively studied, penultimate effects have been found in some cases. Thus in the anionic polymerization of styrene t-vinylpyri-dine, 4-vinylpyridine adds faster to chains ending in 4-vinylpyridine if the penultimate unit is styrene [Lee et al., 1963]. [Pg.515]

The stereoselective polymerization of various acrylates and methacrylates has been studied using initiators such as atkyllithium [Bywater, 1989 Pasquon et al., 1989 Quirk, 1995, 2002]. Table 8-12 illustrates the effects of counterion, solvent, and temperature on the stereochemistry of the anionic polymerization of methyl methacrylate (MMA). In polar solvents (pyridine and THF versus toluene), the counterion is removed from the vicinity of the propagating center and does not exert an influence on entry of the next monomer unit. The tendency is toward syndiotactic placement via chain end control. The extent of syndiotacticity... [Pg.699]

The polymerization cir-l-rf-propene by traditional Ziegler-Natta initiators in hydrocarbon solvents yields the erythrodiisotactic structure, while under similar solvent conditions anionic polymerization of cis- -d-methyl acrylate yields the threodiisotactic polymer. Explain the factor(s) responsible for this difference. [Pg.727]

As explained in Sections 16.3.4, 6.4.1, and 16.4.2, SEC is a nonabsolute method, which needs calibration. The most popular calibration materials are narrow molar mass distribution polystyrenes (PS). Their molar mass averages are determined by the classical absolute methods—or by SEC applying either the absolute detection or the previously calibrated equipment. The latter approach may bring about the transfer and even the augmentation of errors. Therefore, it is recommended to apply exclusively the certified well-characterized materials for calibrations. These are often called PS calibration standards and are readily available from numerous companies in the molar mass range from about 600 to over 30,000,000g moL. Their prices are reasonable and on average (much) lower than the cost of other narrow MMD polymers. Other available homopolymer calibration materials include various poly(acrylate)s and poly(methacrylate)s. They are, similar to PS, synthesized by anionic polymerization. Some calibration materials are prepared by the methods of preparative fractionation, for example, poly(isobutylene)s and poly(vinylchloride)s. [Pg.491]

Amplification. See Chirality amplification Anhydrides, ring opening, 331 Anionic polymerization methyl sorbate, 174 trityl acrylate, 181 Annelation, Robinson method, 336 Antibiotics, 8, 44, 80 Antibodies, 12... [Pg.192]

The most widely investigated optically active poly-acrylic-esters are the polymers of bomyl and menthyl acrylate and methacrylate in this case the monomers have been polymerized by radical polymerization using benzoyl-peroxide (135), A. I. B. N. (134, 135), y-rays (131, 135), U. V. rays (4) in the presence of benzoin (134), and by anionic polymerization using LiC4H9 (4, 135) or C6H5MgBr (134, 135) as catalyst. [Pg.425]

Diphenylmethylcarbanions. The carbanions based on diphenyknethane (pKa = 32) (6) are useful initiators for vinyl and heterocyclic monomers, especially alkyl methacrylates at low temperatures (94,95). Addition of lithium chloride or lithium /W -butoxide has been shown to narrow the molecular weight distribution and improve the stability of active centers for anionic polymerization of both alkyl methacrylates and tert-huXyi acrylate (96,97). Surprisingly, these more stable carbanions can also efficiendy initiate the polymerization of styrene and diene monomers (98). [Pg.240]

Enolate Initiators. In principle, ester enolate anions should represent the ideal initiators for anionic polymerization of alkyl methacrylates. Although general procedures have been developed for the preparation of a variety of alkali metal enolate salts, many of these compounds are unstable except at low temperatures (67,102,103). Useful initiating systems for acrylate polymerization have been prepared from complexes of ester enolates with alkali metal alkoxides (104,105). [Pg.240]


See other pages where Polymerizations, anionic acrylates is mentioned: [Pg.170]    [Pg.269]    [Pg.500]    [Pg.31]    [Pg.104]    [Pg.111]    [Pg.132]    [Pg.270]    [Pg.20]    [Pg.20]    [Pg.11]    [Pg.155]    [Pg.280]    [Pg.656]    [Pg.664]    [Pg.50]    [Pg.145]    [Pg.133]    [Pg.419]    [Pg.419]    [Pg.186]    [Pg.162]    [Pg.112]    [Pg.119]    [Pg.42]    [Pg.97]    [Pg.98]    [Pg.71]    [Pg.72]   
See also in sourсe #XX -- [ Pg.1150 ]




SEARCH



Acrylate anionic polymerization polar solvents

Acrylates, alkyl anionic polymerization

Acrylates, polymerization

Acrylic monomers, anionic polymerization

Acrylic polymerization

Anionic Polymerization of Acrylic Monomers

Anionic acrylate

Anionic polymerization methacrylates/acrylates

Lithium chloride, anionic polymerization methacrylates/acrylates

Polar solvents, anionic polymerization methacrylates/acrylates

© 2024 chempedia.info