Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acids sulfur oxides

However, some problems such as low resistance in the presence of certain chemicals (hydrochloric acid, sulfur oxide and CO2) make them less attractive. Much effort has been also focused on the synthesis of inorganic membranes such as metal, molecular sieving carbon, zeolite and ceramics for the H2 separation. Table 17.8 reports some of the results present in the open literature about inorganic membranes for hydrogen separation. [Pg.241]

In these methods, the sulfur oxides produced during combustion are, before detection, either converted into sulfuric acid by bubbling in a hydrogen peroxide-water solution or converted into sulfates. [Pg.32]

Alkali metals Moisture, acetylene, metal halides, ammonium salts, oxygen and oxidizing agents, halogens, carbon tetrachloride, carbon, carbon dioxide, carbon disul-flde, chloroform, chlorinated hydrocarbons, ethylene oxide, boric acid, sulfur, tellurium... [Pg.1207]

Meta.1 Conta.mina.nts and Ash. Alkali metals form basic oxides that are very reactive toward acidic species such as the acid gases, siHcates, and alurninates. These form stable salts with acid gases if the off-gas contains such gases. Sodium, the most common of these metals, prefers to form chlorides ahead of sulfates. Sodium carbonate only forms in the absence of haHdes and sulfur oxides, SO. There usually is too Htde NO present to form nitrates (see Sodium compounds). [Pg.58]

Niobium Pent chloride. Niobium pentachloride can be prepared in a variety of ways but most easily by direct chlorination of niobium metal. The reaction takes place at 300—350°C. Chlorination of a niobium pentoxide—carbon mixture also yields the pentachloride however, generally the latter is contaminated with niobium oxide trichloride. The pentachloride is a lemon-yeUow crystalline soHd that melts to a red-orange Hquid and hydrolyzes readily to hydrochloric acid and niobic acid. It is soluble in concentrated hydrochloric and sulfuric acids, sulfur monochloride, and many organic solvents. [Pg.27]

Chemical oxidation with strong acid is reportedly selective at the 6-hydroxyl, either with nitric acid—sulfuric acid—vanadium salts (241) which is claimed as specific for the 6-hydroxyl up to 40% conversion, or with dinitrogen tetroxide ia carbon tetrachloride, with similar specificity up to 25% conversion (242). [Pg.483]

The radioactive isotopes available for use as precursors for radioactive tracer manufacturing include barium [ C]-carbonate [1882-53-7], tritium gas, p2p] phosphoric acid or pP]-phosphoric acid [15364-02-0], p S]-sulfuric acid [13770-01 -9], and sodium [ I]-iodide [24359-64-6]. It is from these chemical forms that the corresponding radioactive tracer chemicals are synthesized. [ C]-Carbon dioxide, [ C]-benzene, and [ C]-methyl iodide require vacuum-line handling in weU-ventilated fume hoods. Tritium gas, pH]-methyl iodide, sodium borotritide, and [ I]-iodine, which are the most difficult forms of these isotopes to contain, must be handled in specialized closed systems. Sodium p S]-sulfate and sodium [ I]-iodide must be handled similarly in closed systems to avoid the Uberation of volatile p S]-sulfur oxides and [ I]-iodine. Adequate shielding must be provided when handling P P]-phosphoric acid to minimize exposure to external radiation. [Pg.437]

Thermal decomposition of spent acids, eg, sulfuric acid, is required as an intermediate step at temperatures sufficientiy high to completely consume the organic contaminants by combustion temperatures above 1000°C are required. Concentrated acid can be made from the sulfur oxides. Spent acid is sprayed into a vertical combustion chamber, where the energy required to heat and vaporize the feed and support these endothermic reactions is suppHed by complete combustion of fuel oil plus added sulfur, if further acid production is desired. High feed rates of up to 30 t/d of uniform spent acid droplets are attained with a single rotary atomizer and decomposition rates of ca 400 t/d are possible (98). [Pg.525]

Fig. 7. Effect of activators on cure rate where A is 2.5 phr sulfur B, sulfur + stearic acid (2 phr) + zinc oxide (5 phr) C, sulfur + TBBS (0.6 phr) D, sulfur + TBBS + stearic acid E, sulfur + TBBS + zinc oxide and E, sulfur + TBBS + stearic acid + zinc oxide. To convert cm /kg to in./lb, divide by 5.5. Fig. 7. Effect of activators on cure rate where A is 2.5 phr sulfur B, sulfur + stearic acid (2 phr) + zinc oxide (5 phr) C, sulfur + TBBS (0.6 phr) D, sulfur + TBBS + stearic acid E, sulfur + TBBS + zinc oxide and E, sulfur + TBBS + stearic acid + zinc oxide. To convert cm /kg to in./lb, divide by 5.5.
Potassium permanganate oxidizes succinic acid to a mixture of malic and tartaric acid [133-37-9]. 3-Hydroxypropionic acid [503-66-2] is obtained with sodium perchlorate. Cerium(IV) sulfate in sulfuric acid medium oxidizes succinic acid to oxaloacetic acid (71). [Pg.535]

Certain of the above reactions are of practical importance. The oxidation of hydrogen sulfide in a flame is one means for producing the sulfur dioxide required for a sulfuric acid plant. Oxidation of hydrogen sulfide by sulfur dioxide is the basis of the Claus process for sulfur recovery. The Claus reaction can also take place under mil der conditions in the presence of water, which catalyzes the reaction. However, the oxidation of hydrogen sulfide by sulfur dioxide in water is a complex process leading to the formation of sulfur and polythionic acids, the mixture known as Wackenroeder s Hquid (105). [Pg.134]

Numerous oxides of sulfur have been reported and those that have been characterized are SO [13827-32-2] S2O [20901 -21 -7] S O (n = 6-10), SO2, SO, and SO4 [12772-98-4]. Among these, SO2 and SO ate of principal importance. Sulfur oxide chemistry has been reviewed (210—212). Sulfur trioxide, SO, is discussed elsewhere (see Sulfuric acid and sulfur trioxide). [Pg.143]

Zirconium nitride is dissolved by concentrated hydrofluoric acid, dissolved slowly by hot concentrated sulfuric acid, and oxidizes to zirconium oxide above 700°C in air. [Pg.434]

The action of sulfur nucleophiles like sodium bisulfite and thiophenols causes even pteridines that are unreactive towards water or alcohols to undergo covalent addition reactions. Thus, pteridin-7-one smoothly adds the named S-nucleophiles in a 1 1 ratio to C-6 (65JCS6930). Similarly, pteridin-4-one (73) yields adducts (74) in a 2 1 ratio at C-6 and C-7 exclusively (equation 14), as do 4-aminopteridine and lumazine with sodium bisulfite. Xanthopterin forms a 7,8-adduct and 7,8-dihydropterin can easily be converted to sodium 5,6,7,8-tetrahydropterin-6-sulfonate (66JCS(C)285), which leads to pterin-6-sulfonic acid on oxidation (59HCA1854). [Pg.287]

Because the integrity of the dihydrothiazine ring and its C-4 carboxyl substituent is crucial to useful antimicrobial activity, reactions involving this part of the cephalosporin molecule are usually undesirable. The possibilities for sulfur oxidation or alkylation, substitution at C-2 which is adjacent to both sulfur and a double bond, double bond isomerization and addition reactions, and the influence of a free carboxylic acid must all be considered in designing reactions to selectively modify other cephalosporin functionalities. [Pg.291]

Quinizarin has been prepared by heating /)-chlorophenol, phthalic anhydride, and sulfuric acid by heating hydroquinone with phthalic anhydride - by heating hydroquinone, phthalic anhydride and c.i>. sulfuric acid by oxidizing anthraquinone... [Pg.79]

The problems with the combustion reaction occur because the process also produces many other products, most of which are termed air pollutants. These can be carbon monoxide, carbon dioxide, oxides of sulfur, oxides of nitrogen, smoke, fly ash, metals, metal oxides, metal salts, aldehydes, ketones, acids, polynuclear hydrocarbons, and many others. Only in the past few decades have combustion engineers become concerned about... [Pg.78]

The major effects of air pollution on fabrics are soiling and loss of tensile strength. Sulfur oxides are considered to cause the greatest loss of tensile strength. The most widely publicized example of this type of problem has been damage to women s nylon hose by air pollution, described in newspaper accounts. The mechanism is not understood, but it is postulated that fine droplets of sulfuric acid aerosol deposit on the very thin nylon... [Pg.130]

Sulfur oxides (SO,) are compounds of sulfur and oxygen molecules. Sulfur dioxide (SO2) is the predominant form found in the lower atmosphere. It is a colorless gas that can be detected by taste and smell in the range of 1, (X)0 to 3,000 uglm. At concentrations of 10,000 uglm , it has a pungent, unpleasant odor. Sulfur dioxide dissolves readily in water present in the atmosphere to form sulfurous acid (H SOj). About 30% of the sulfur dioxide in the atmosphere is converted to sulfate aerosol (acid aerosol), which is removed through wet or dry deposition processes. Sulfur trioxide (SO3), another oxide of sulfur, is either emitted directly into the atmosphere or produced from sulfur dioxide and is readily converted to sulfuric acid (H2SO4). [Pg.38]

Health effects attributed to sulfur oxides are likely due to exposure to sulfur dioxide, sulfate aerosols, and sulfur dioxide adsorbed onto particulate matter. Alone, sulfur dioxide will dissolve in the watery fluids of the upper respiratory system and be absorbed into the bloodstream. Sulfur dioxide reacts with other substances in the atmosphere to form sulfate aerosols. Since most sulfate aerosols are part of PMj 5, they may have an important role in the health impacts associated with fine particulates. However, sulfate aerosols can be transported long distances through the atmosphere before deposition actually occurs. Average sulfate aerosol concentrations are about 40% of average fine particulate levels in regions where fuels with high sulfur content are commonly used. Sulfur dioxide adsorbed on particles can be carried deep into the pulmonary system. Therefore, reducing concentrations of particulate matter may also reduce the health impacts of sulfur dioxide. Acid aerosols affect respiratory and sensory functions. [Pg.39]

Sulfur dioxide emissions may affect building stone and ferrous and nonferrous metals. Sulfurous acid, formed from the reaction of sulfur dioxide with moisture, accelerates the corrosion of iron, steel, and zinc. Sulfur oxides react with copper to produce the green patina of copper sulfate on the surface of the copper. Acids in the form of gases, aerosols, or precipitation may chemically erode building materials such as marble, limestone, and dolomite. Of particular concern is the chemical erosion of historical monuments and works of art. Sulfurous and sulfuric acids formed from sulfur dioxide and sulfur trioxide when they react with moisture may also damage paper and leather. [Pg.40]


See other pages where Acids sulfur oxides is mentioned: [Pg.21]    [Pg.176]    [Pg.267]    [Pg.21]    [Pg.176]    [Pg.267]    [Pg.32]    [Pg.393]    [Pg.241]    [Pg.372]    [Pg.385]    [Pg.242]    [Pg.275]    [Pg.425]    [Pg.511]    [Pg.70]    [Pg.115]    [Pg.115]    [Pg.89]    [Pg.226]    [Pg.83]    [Pg.102]    [Pg.150]    [Pg.572]    [Pg.223]    [Pg.223]    [Pg.109]    [Pg.265]    [Pg.2382]    [Pg.150]    [Pg.29]    [Pg.41]    [Pg.41]   
See also in sourсe #XX -- [ Pg.2 , Pg.4 , Pg.4 , Pg.5 , Pg.6 , Pg.6 ]




SEARCH



Sulfur oxide

Sulfur oxide acidity

Sulfur oxides oxidation

Sulfur oxidized

Sulfur oxidizer

Sulfurous acid, oxidation

Sulfurous oxide

© 2024 chempedia.info