Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acids heat generation

Carbon dioxide is used in the manufacture of sodium carbonate by the ammonia-soda process, urea, salicyclic acid (for aspirin), fire extinguishers and aerated water. Lesser amounts are used to transfer heat generated by an atomic reactor to water and so produce steam and electric power, whilst solid carbon dioxide is used as a refrigerant, a mixture of solid carbon dioxide and alcohol providing a good low-temperature bath (195 K) in which reactions can be carried out in the laboratory. [Pg.182]

The mixture of ethanol and concentrated sulphuric acid required in this and several subsequent preparations should always be prepared by adding the heavy acid to the ethanol. If the ethanol is added to the acid, it will tend to float on the surface of the acid, and the heat generated at the interface may blow the upper liquid out of the flask... [Pg.78]

Finding the End Point by Monitoring Temperature The reaction between an acid and a base is exothermic. Heat generated by the reaction increases the temperature of the titration mixture. The progress of the titration, therefore, can be followed by monitoring the change in temperature. [Pg.293]

The reaction is very exothermic and the heat generated is used to evaporate a large part of the water present when aqueous hydrochloric acid is used. Batch or continuous crystallisation is then employed to recover the ammonium chloride. [Pg.364]

Vanadium powder can be prepared by substituting V2O2 for the V20 as the vanadium source. The heat generated during the reduction of the trioxide is considerably less than for the pentoxide, so that only soHd products are obtained. The powder is recovered from the product by leaching the slag with dilute acid. [Pg.383]

The considerable amount of heat generated in nitric acid plants suggests that steam be produced and used to drive the compressors. [Pg.114]

Modern nitric acid plants are designed for energy self-sufficiency during normal operation. Except for the startup phase, process heat generated will equal energy consumed by the compressors. Moreover, in many cases surplus energy can be exported in the form of steam, for example. [Pg.115]

A back-pressure (noncondensing) turbine may also be used if there is a profitable use for intermediate-pressure steam. In the unlikely event that large quantities of steam are required, additional high-pressure steam from an external source might be necessary. However, while it is theoretically possible that the amount of heat generated in the nitric acid plant will be insufficient to cover the entire demand, this is not usually a valid concern. [Pg.115]

Cooler Absorbers When the absorption of a gas is accompanied by the evolution of heat, an important function of the absorption equipment is the removal of the heat generated. This may be accomplished by using a number of towers in series, the liquid from each tower being circulated through an external cooler. There are different types of cooler-absorbers in which processes of this type can be carried out in a single unit. The materials of which these cooler-absorbers are constructed should be of high thermal conductivity and resistant to corrosion by the substances used in the process. As an example, in the manufacture of hydrochloric acid of the... [Pg.246]

The most recent major expln in a US TNT plant occurred in May 1974 at the Radford Army Ammunition Plant. The accident completely destroyed one of the three continuous nitration lines at the plant. According to the AMC News, Sept 1974, the investigation board reported that an operator inadvertently introduced a 5 to 6-foot rubber hose to clean out unwanted material that had collected in a transfer line leading to the nitrator, when the hose was pulled from his hands into the nitrator. This resulted in a rapid temp rise and subsequent explosion. The hose was commonly used in this manner . The material causing the blockage in the transfer line was believed to be an oxidation product of TNT, 2,2 -dicarboxy-3,3, 5,5,-tetra-nitroazoxybenzene, also referred to as White Compound. The introduction of the rubber hose caused a rapid, exothermic oxidation reaction between the hose material and the mixed acid present. The heat generated by this reaction caused a local acceleration of the normal nitration/oxidation reactions which occur in the nitrator until a critical temp was reached, at which point rapid oxidation of DNT/TNT proceeded as a runaway reaction, igniting the material present in the vessel. [Pg.267]

To slow down and control the rate of reaction, a moderator is also required. Typically, the moderator is boric acid, graphite, or heavy water (D20) and is present in the high-purity water, which also serves as a primary coolant for the fuel and the reactor vessel. The tremendous heat generated by nuclear fission is transferred to this closed-loop coolant, which is contained within a reactor primary-coolant circulation system. The high-purity water coolant also contains a suitable pH buffer such as lithium hydroxide, which has the additional effect of limiting the corrosion of fuel-cladding and other components. [Pg.65]

To evaluate the heat exchange/productivity performances of the device and its environment, an acid-base neutralization involving sulfuric acid and soda has been performed. It is an instantaneous and exothermic reaction with AH = —92.4 kj moP (NaOH). Each experiment is characterized by the initial concentration of the reactants (from 10 to 30% in mass of soda and from 5 to 12% in mass of sulfuric acid). These concentrations are varied in order to evaluate the behavior of the reactor with respect to different amounts of heat generated (from 0.4 to 1.3 kW). Each run is performed with a variable utility flow rate (from 1 to 3 m h ). [Pg.276]

One example is silicate cement where orthosilicic acid, chemically generated in solution, condenses to form a silicic acid gel. Another is refractory cement where a cementitious product is formed by the heat treatment of an acid orthophosphate, a process which again involves condensation to form a polyphosphate. [Pg.7]

HF anhydrous hydrogen fluoride heat generation, liberating toxic vapors heat generation, liberating toxic vapors strong acid corrosive toxic vapor and liquid ... [Pg.27]

Bardet Also called Samica. A process for expanding mica in order to make it into paper. It is partially dehydrated by heating and the hot product is quenched in alkaline water. After drying, it is immersed in dilute sulfuric acid, which generates gas between the layers, forcing them apart. In this expanded condition it can easily be made into a paper. [Pg.31]

Another thermal analysis method available for catalyst characterization is microcalorimetiy, which is based on the measurement of the heat generated or consumed when a gas adsorbs and reacts on the surface of a solid [66-68], This information can be used, for instance, to determine the relative stability among different phases of a solid [69], Microcalorimetiy is also applicable in the measurement of the strengths and distribution of acidic or basic sites as well as for the characterization of metal-based catalysts [66-68], For instance, Figure 1.10 presents microcalorimetry data for ammonia adsorption on H-ZSM-5 and H-mordenite zeolites [70], clearly illustrating the differences in both acid strength (indicated by the different initial adsorption heats) and total number of acidic sites (measured by the total ammonia uptake) between the two catalysts. [Pg.11]

Possible solutions to overcome this problem are (1) decrease the residence time the decrease of conversion is more than compensated by an increase of selectivity (due to the lower extent of methacrylic acid combustion), and in overall the productivity increases (2) increase the total pressure, while simultaneously increasing both the oxygen and the isobutane partial pressure, as well as the total gas flow (so as to keep a constant contact time in the reactor). A higher pressure also implies smaller reactor volume, and hence lower investment costs. Under these circumstances, productivity as high as 6.4 mmol/h/gcat was reached, which is acceptable for industrial production. The additional heat required for the recirculation of unconverted isobutane and for increased pressure would be equalized by the higher heat generated by the reaction. [Pg.270]

Examples of a substrate cycles are the glucose/glucose 6-phosphate, fructose 6-phosphate/fmctose 1,6-bisphosphate and fatty acid/triacylglycerol cycle. These are described in Chapters 3, 6, 7 and 11. One study has shown a direct role of a substrate cycle in heat generation (Appendix 9.11). [Pg.203]


See other pages where Acids heat generation is mentioned: [Pg.226]    [Pg.151]    [Pg.523]    [Pg.151]    [Pg.8]    [Pg.163]    [Pg.83]    [Pg.7]    [Pg.176]    [Pg.238]    [Pg.228]    [Pg.353]    [Pg.217]    [Pg.649]    [Pg.372]    [Pg.217]    [Pg.198]    [Pg.237]    [Pg.527]    [Pg.369]    [Pg.106]    [Pg.90]    [Pg.170]    [Pg.233]    [Pg.301]    [Pg.81]    [Pg.145]    [Pg.245]    [Pg.24]    [Pg.36]    [Pg.330]    [Pg.149]   
See also in sourсe #XX -- [ Pg.364 , Pg.369 ]




SEARCH



Acid generation

Acid generators

Heat generated

Heat generation

Heating, generation

Sulfuric acid heat generation

© 2024 chempedia.info