Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acidity polyethers

Nogueiras, M.J., Gago-Martinez, A., Paniello, A.I., Twohig, M., James, K.J., and Lawrence, IF. 2003. Comparison of different fluorimetric HPLC methods for analysis of acidic polyether toxins in marine phytoplankton. AnalBioanal Chem 377, 1202-1206. [Pg.184]

Ethers form Lewis acid Lewis base complexes with metal ions Certain cyclic polyethers called crown ethers, are particularly effective m coor dinatmg with Na" and K" and salts of these cations can be dissolved m nonpolar solvents when crown ethers are present Under these conditions the rates of many reactions that involve anions are accelerated... [Pg.692]

Critical micelle concentration (Section 19 5) Concentration above which substances such as salts of fatty acids aggre gate to form micelles in aqueous solution Crown ether (Section 16 4) A cyclic polyether that via lon-dipole attractive forces forms stable complexes with metal 10ns Such complexes along with their accompany mg anion are soluble in nonpolar solvents C terminus (Section 27 7) The amino acid at the end of a pep tide or protein chain that has its carboxyl group intact—that IS in which the carboxyl group is not part of a peptide bond Cumulated diene (Section 10 5) Diene of the type C=C=C in which a single carbon atom participates in double bonds with two others... [Pg.1280]

Synthetic oils have been classified by ASTM into synthetic hydrocarbons, organic esters, others, and blends. Synthetic oils may contain the following compounds diaLkylben2enes, poly(a-olefins) polyisobutylene, cycloaUphatics, dibasic acid esters, polyol esters, phosphate esters, siUcate esters, polyglycols, polyphenyl ethers, siUcones, chlorofluorocarbon polymers, and perfluoroalkyl polyethers. [Pg.368]

Examples of polymers which form anisotropic polymer melts iaclude petroleum pitches, polyesters, polyethers, polyphosphaziaes, a-poly- -xyljlene, and polysdoxanes. Synthesis goals iaclude the iacorporation of a Hquid crystal-like entity iato the maia chaia of the polymer to iacrease the strength and thermal stabiHty of the materials that are formed from the Hquid crystal precursor, the locking ia of Hquid crystalline properties of the fluid iato the soHd phase, and the production of extended chain polymers that are soluble ia organic solvents rather than sulfuric acid. [Pg.201]

Long-chain aUphatic acids such as adipic acid (qv) [124-04-9] are generally used to improve flexibiUty and enhance impact properties, demonstrating subtle improvements over resins modified with the ether glycols (diethylene glycol) and polyether glycols (polypropylene glycol) (see PoLYETHERs). [Pg.313]

The tendency of aliphatic ethers toward oxidation requires the use of antioxidants such as hindered phenoHcs (eg, BHT), secondary aromatic amines, and phosphites. This is especially tme in polyether polyols used in making polyurethanes (PUR) because they may become discolored and the increase in acid number affects PUR production. The antioxidants also reduce oxidation during PUR production where the temperature could reach 230°C. A number of new antioxidant products and combinations have become available (115,120,124—139) (see Antioxidants). [Pg.353]

THE can be polymerized by many strongly acidic catalysts, but not all of them produce the requked bitimctional polyether glycol with a minimum of by-products. Several large-scale commercial polymerization processes are based on fluorosulfonic acid, HESO, catalysis, which meets all these requkements. The catalyst is added to THE at low temperatures and an exothermic polymerization occurs readily. The polymerization products are poly(tetramethylene ether) chains with sulfate ester groups (8). [Pg.364]

In a subsequent product work-up, the sulfates are hydrolyzed and the acid is removed by water extraction (206,207). In the extraction step, most water-soluble short polyether chains are also removed, and the molecular weight distribution becomes narrower, from close to the theoretical value... [Pg.364]

Polyethers. Antibiotics within this family contain a number of cycHc ether and ketal units and have a carboxyHc acid group. They form complexes with mono- and divalent cations that ate soluble ia aoapolar organic solvents. They iateract with bacterial cell membranes and allow cations to pass through the membranes causiag cell death. Because of this property they have been classified as ionophores. Monensia, lasalocid, and maduramicia are examples of polyethers that are used commercially as anticoccidial agents ia poultry and as growth promotants ia mmiaants. [Pg.474]

Polymerization to Polyether Polyols. The addition polymerization of propylene oxide to form polyether polyols is very important commercially. Polyols are made by addition of epoxides to initiators, ie, compounds that contain an active hydrogen, such as alcohols or amines. The polymerization occurs with either anionic (base) or cationic (acidic) catalysis. The base catalysis is preferred commercially (25,27). [Pg.134]

Polymers. The molecular weights of polymers used in high energy electron radiation-curable coating systems are ca 1,000—25,000 and the polymers usually contain acryUc, methacrylic, or fumaric vinyl unsaturation along or attached to the polymer backbone (4,48). Aromatic or aUphatic diisocyanates react with glycols or alcohol-terrninated polyether or polyester to form either isocyanate or hydroxyl functional polyurethane intermediates. The isocyanate functional polyurethane intermediates react with hydroxyl functional polyurethane and with acryUc or methacrylic acids to form reactive p olyurethanes. [Pg.428]

Reactive (unsaturated) epoxy resins (qv) are reaction products of multiple glycidyl ethers of phenoHc base polymer substrates with methacrylic, acryhc, or fumaric acids. Reactive (unsaturated) polyester resins are reaction products of glycols and diacids (aromatic, aUphatic, unsaturated) esterified with acryhc or methacrylic acids (see POLYESTERS,unsaturated). Reactive polyether resins are typically poly(ethylene glycol (600) dimethacrylate) or poly(ethylene glycol (400) diacrylate) (see PoLYETPiERs). [Pg.428]

Polyether Polyols. Polyether polyols are addition products derived from cyclic ethers (Table 4). The alkylene oxide polymerisation is usually initiated by alkah hydroxides, especially potassium hydroxide. In the base-catalysed polymerisation of propylene oxide, some rearrangement occurs to give aHyl alcohol. Further reaction of aHyl alcohol with propylene oxide produces a monofunctional alcohol. Therefore, polyether polyols derived from propylene oxide are not truly diftmctional. By using sine hexacyano cobaltate as catalyst, a more diftmctional polyol is obtained (20). Olin has introduced the diftmctional polyether polyols under the trade name POLY-L. Trichlorobutylene oxide-derived polyether polyols are useful as reactive fire retardants. Poly(tetramethylene glycol) (PTMG) is produced in the acid-catalysed homopolymerisation of tetrahydrofuran. Copolymers derived from tetrahydrofuran and ethylene oxide are also produced. [Pg.347]

Polyester Polyols. Initially polyester polyols were the preferred raw materials for polyurethanes, but in the 1990s the less expensive polyether polyols dominate the polyurethane market. Inexpensive aromatic polyester polyols have been introduced for rigid foam appHcations. These are obtained from residues of terephthaHc acid production or by transesterification of dimethyl terephthalate (DMT) or poly(ethylene terephthalate) (PET) scrap with glycols. [Pg.347]

Polyester and polyether diols are used with MDI in the manufacture of thermoplastic polyurethane elastomers (TPU). The polyester diols are obtained from adipic acid and diols, such as ethylene glycol, 1,4-butanediol, or 1,6-hexanediol. The preferred molecular weights are 1,000 to 2,000, and low acid numbers are essential to ensure optimal hydrolytic stabihty. Also, caprolactone-derived diols and polycarbonate diols are used. Polyether diols are... [Pg.350]

Table 1 Hsts the polyether antibiotics arranged by the number of carbons in the skeleton. Many of these compounds were isolated independendy in separate laboratories and thus have more than one designation. The groups are subdivided depending on the number of spiroketals. Two classes fall outside this scheme the pyrrole ether type containing a heterocycHc ring, and the acyltetronic acid type, that has an acyHdene tetronic acid instead of a carboxyHc acid. These compounds are ionophores and because of their common features are included as polyethers. Table 1 Hsts the polyether antibiotics arranged by the number of carbons in the skeleton. Many of these compounds were isolated independendy in separate laboratories and thus have more than one designation. The groups are subdivided depending on the number of spiroketals. Two classes fall outside this scheme the pyrrole ether type containing a heterocycHc ring, and the acyltetronic acid type, that has an acyHdene tetronic acid instead of a carboxyHc acid. These compounds are ionophores and because of their common features are included as polyethers.
Polyethers are usually found in both the filtrate and the mycelial fraction, but in high yielding fermentations they are mosdy in the mycelium because of their low water-solubiUty (162). The high lipophilicity of both the free acid and the salt forms of the polyether antibiotics lends these compounds to efficient organic solvent extraction and chromatography (qv) on adsorbents such as siUca gel and alumina. Many of the production procedures utilize the separation of the mycelium followed by extraction using solvents such as methanol or acetone. A number of the polyethers can be readily crystallized, either as the free acid or as the sodium or potassium salt, after only minimal purification. [Pg.171]


See other pages where Acidity polyethers is mentioned: [Pg.254]    [Pg.36]    [Pg.333]    [Pg.302]    [Pg.254]    [Pg.36]    [Pg.333]    [Pg.302]    [Pg.425]    [Pg.247]    [Pg.326]    [Pg.578]    [Pg.366]    [Pg.515]    [Pg.70]    [Pg.127]    [Pg.243]    [Pg.304]    [Pg.366]    [Pg.368]    [Pg.369]    [Pg.481]    [Pg.43]    [Pg.528]    [Pg.135]    [Pg.102]    [Pg.202]    [Pg.343]    [Pg.350]    [Pg.307]    [Pg.166]    [Pg.169]    [Pg.172]    [Pg.172]    [Pg.172]   
See also in sourсe #XX -- [ Pg.130 , Pg.139 ]




SEARCH



Polyethers carboxylic acid terminated

© 2024 chempedia.info