Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid halides ketones from

Metallic sodium. This metal is employed for the drying of ethers and of saturated and aromatic hydrocarbons. The bulk of the water should first be removed from the liquid or solution by a preliminary drying with anhydrous calcium chloride or magnesium sulphate. Sodium is most effective in the form of fine wire, which is forced directly into the liquid by means of a sodium press (see under Ether, Section II,47,i) a large surface is thus presented to the liquid. It cannot be used for any compound with which it reacts or which is affected by alkalis or is easily subject to reduction (due to the hydrogen evolved during the dehydration), viz., alcohols, acids, esters, organic halides, ketones, aldehydes, and some amines. [Pg.143]

Vinyllithium [917-57-7] can be formed direcdy from vinyl chloride by means of a lithium [7439-93-2] dispersion containing 2 wt % sodium [7440-23-5] at 0—10°C. This compound is a reactive intermediate for the formation of vinyl alcohols from aldehydes, vinyl ketones from organic acids, vinyl sulfides from disulfides, and monosubstituted alkenes from organic halides. It can also be converted to vinylcopper [37616-22-1] or divinylcopper lithium [22903-99-7], which can then be used to introduce a vinyl group stereoselectively into a variety of a, P-unsaturated systems (26), or simply add a vinyl group to other a, P-unsaturated compounds to give y, 5-unsaturated compounds. Vinyllithium reagents can also be converted to secondary alcohols with trialkylb o r ane s. [Pg.414]

Notable examples of general synthetic procedures in Volume 47 include the synthesis of aromatic aldehydes (from dichloro-methyl methyl ether), aliphatic aldehydes (from alkyl halides and trimethylamine oxide and by oxidation of alcohols using dimethyl sulfoxide, dicyclohexylcarbodiimide, and pyridinum trifluoro-acetate the latter method is particularly useful since the conditions are so mild), carbethoxycycloalkanones (from sodium hydride, diethyl carbonate, and the cycloalkanone), m-dialkylbenzenes (from the />-isomer by isomerization with hydrogen fluoride and boron trifluoride), and the deamination of amines (by conversion to the nitrosoamide and thermolysis to the ester). Other general methods are represented by the synthesis of 1 J-difluoroolefins (from sodium chlorodifluoroacetate, triphenyl phosphine, and an aldehyde or ketone), the nitration of aromatic rings (with ni-tronium tetrafluoroborate), the reductive methylation of aromatic nitro compounds (with formaldehyde and hydrogen), the synthesis of dialkyl ketones (from carboxylic acids and iron powder), and the preparation of 1-substituted cyclopropanols (from the condensation of a 1,3-dichloro-2-propanol derivative and ethyl-... [Pg.144]

Organometallic compounds or carbanions undergo a number of reactions in which the carbanion or carbanion-like moiety of the organometallic compound acts as a nucleophilic displacing agent. Examples are the formation of hydrocarbons from alkyl halides, alkyl halides from halogens, and ketones from acid chlorides or esters. The latter two reactions are closely related to the base-catalyzed condensations and are perhaps additions as well as displacement reactions. Related addition reactions are the carbonation of organometallic compounds and the addition to ketones or aldehydes. [Pg.207]

Scheme 83 Nickel-catalyzed formation of ketones and acid halides from carbon dioxide and aryl or vinyl halides. Scheme 83 Nickel-catalyzed formation of ketones and acid halides from carbon dioxide and aryl or vinyl halides.
The amide carbonyl vibrational frequencies of A-acyloxy-Af-alkoxyamides are similar to that observed for the twisted l-aza-2-adamantanone (98, 1731 cm ) . It is apparent from the extensive data available for both A-chlorohydroxamic esters (Table 2, Section in.B.2) and Af-acyloxy-A-alkoxyamides that when an amide nitrogen lone pair loses conjugation with the carbonyl (either through twisting/pyramidalization or, in the case of anomeric amides, pyramidalization alone), the configuration is analogous to an ester rather than a ketone. As with esters, acid halides and anhydrides or diacyl peroxides , the carbonyl stretch frequency is higher than that of ketones and aldehydes... [Pg.871]

D. A. Shirley, The Synthesis of Ketones from Acid Halides and Organometallic Compounds of Magnesium, Zinc and Cadmium, Organic Reactions 8, 28 (1954). [Pg.590]

Tradition reserves the use of the name acid for substances that transfer protons measurably to water. Thus the carboxylic acids stand out from alkynes, halides, alcohols, and simple aldehydes and ketones in giving water solutions that are acidic to indicator papers or pH meters as the result of proton transfers from the carboxyl groups ... [Pg.789]

The at complex from DIB AH and butyllithium is a selective reducing agent.16 It is used tor the 1,2-reduction of acyclic and cyclic enones. Esters and lactones are reduced at room temperature to alcohols, and at -78 C to alcohols and aldehydes. Acid chlorides are rapidly reduced with excess reagent at -78 C to alcohols, but a mixture of alcohols, aldehydes, and acid chlorides results from use of an equimolar amount of reagent at -78 C. Acid anhydrides are reduced at -78 C to alcohols and carboxylic acids. Carboxylic acids and both primary and secondary amides are inert at room temperature, whereas tertiary amides (as in the present case) are reduced between 0 C and room temperature to aldehydes. The at complex rapidly reduces primary alkyl, benzylic, and allylic bromides, while tertiary alkyl and aryl halides are inert. Epoxides are reduced exclusively to the more highly substituted alcohols. Disulfides lead to thiols, but both sulfoxides and sulfones are inert. Moreover, this at complex from DIBAH and butyllithium is able to reduce ketones selectively in the presence of esters. [Pg.170]

This latter thought has an important consequence if compounds with C=0 double bonds are sorted in decreasing order of resonance stabilization of their C=0 group they are at the same time sorted according to their increasing propensity to enolization. So as the resonance stabilization of the C=0 double bond decreases from 22 kcal/mol to somewhere near zero in the order carboxylic acid amide > carboxylic acid ester/carboxylic acid > ketone > aldehyde > carboxylic acid chloride/-bromide, the enol content increases in this same order (Figure 12.2). These circumstances immediately explain why no enol reactions whatsoever are known of carboxylic acid amides, virtually none of normal carboxylic acid esters/carboxylic acids, but are commonly encountered with ketones, aldehydes and carboxylic acid halides. [Pg.491]

Azoles can be produced from products of palladium-catalyzed hydrazone arylation and can serve as substrates for arylation reactions to produce N-aryl azoles. The Fischer indole synthesis uses N-ary I hydrazones, and these hydrazones can be generated by palladium-catalyzed chemistry. Benzophenone hydrazone was found by both the Yale and MIT groups to be a particularly effective substrate for palladium-catalyzed reactions, as summarized in Eq. (24) [140,141]. Reactions of benzophenone hydrazone with either aryl bromides or iodides occur in high yields using either DPPF- or BINAP-ligated palladium. These reactions are general and occur with electron-rich, electron-poor, hindered or unhindered aryl halides. The products of these reactions can be converted to hydrazones that bear enolizable hydrogens and are suitable for indole synthesis in the presence of acid and ketone [140]. [Pg.223]

Halides are second only to carboxylic acids in their versatility in organic synthesis. Functional group transformations into alkenes, alkynes, amines, aldehydes, alcohols, ethers, hydrocarbons, ketones and other groups may be performed with ease in high yield. However, the major synthetic importance of halides arises from the ease by which compounds that contain this functionality may be used in carbon-carbon bond-forming reactions and in the preparation of heterocyclic compounds. [Pg.710]

Hydrides from carboxylic acids Carboxylic acids from hydrides Carboxylic acids from hydrides Esters from hydrides Hydrides from aldehydes Hydrides from aldehydes Alkyls from aldehydes Ketones from methylenes Ketones from ketones Alkyls from olefins Acetylenes from halides also acetylenes from acetylenes Esters from alcohols also esters from carboxylic acids Alkyls from olefins Alkyls from olefins... [Pg.7]

Classification and Organization of Reactions Forming Difunctional Compounds. This chapter considers all possible difunctional compounds formed from the groups acetylene, carboxylic acid, alcohol, thiol, aldehyde, amide, amine, ester, ether, epoxide, thioether, halide, ketone, nitrile, and olefin. Reactions that form difunctional compounds are classified into sections on the basis of the two functional groups of the product. The relative positions... [Pg.8]

D. A. Shirley, The synthesis of ketones from acid halides and organometallic compounds of magnesium, zinc, and cadmium, Org. React. 1954, 8, 28-58. [Pg.269]

OxazoIones are alkylated at position 4 by alkyl halides, allyl halides and electrophilic alkynes, such as methyl propiolate (equation 36). In contrast, 2-phenyloxazolones react with methyl vinyl ketone at both C(4) and C(2) to yield a mixture of Michael adducts (equation 37). If the phenyl substituent is replaced by the bulky 2,4,6-trimethylphenyl group the addition is directed exclusively to C(4) (81CB2580). Alkylation of 5(4//)-oxazolones is a key step in the synthesis of ketones from a-amino acids (Scheme 16). The outcome of this sequence is the union of the electrophilic fragment R3 with the group R2CO the amino acid thus functions as the equivalent of an acyl anion (78AG(E)450). [Pg.202]


See other pages where Acid halides ketones from is mentioned: [Pg.48]    [Pg.88]    [Pg.796]    [Pg.17]    [Pg.754]    [Pg.135]    [Pg.99]    [Pg.92]    [Pg.162]    [Pg.796]    [Pg.48]    [Pg.319]    [Pg.67]    [Pg.221]    [Pg.92]    [Pg.414]    [Pg.213]   
See also in sourсe #XX -- [ Pg.225 ]




SEARCH



Acid halides

Acid halides divinyl ketones from

Acidic halides

From Acid Halides

Halide From ketone

Ketone synthesis from acid halides

Ketones from acids

Ketones halides

© 2024 chempedia.info