Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid chlorides solubility

Tin IV) chloride, SnCU, stannic chloride. M.p. — 33" C, b.p. 1I4°C. Colourless fuming liquid (Sn plus CI2) hydrolysed in water but forms SnCl4,5H20 and [SnCl p" from acid solutions, soluble in organic solvents. Used as a mordant. [Pg.398]

Method (1) is most frequently used for aliphatic acid amides, while Methods (2a), (2b) and (zc) are used most frequently for aromatic acid amides. Of the last three methods, the Acid Chloride Method (zb) is the most rapid and certain. The Ester Method (za) is practicable only when the amide is insoluble in water, and even then is often very slow unless the ester itself is appreciabb soluble in the aqueous ammonia solution. [Pg.117]

Caldum chloride test. Add CaCl2 solution to a neutrai solution of an oxalate a white precipitate of calcium oxalate is formed, insoluble in acetic acid, but soluble in dil. HCl. [Pg.351]

Method 2. Place a 3 0 g. sample of the mixture of amines in a flask, add 6g. (4-5 ml.) of benzenesulphonyl chloride (or 6 g. of p-toluenesulphonyl chloride) and 100 ml. of a 5 per cent, solution of sodium hydroxide. Stopper the flask and shake vigorously until the odour of the acid chloride has disappeared open the flask occasionally to release the pressure developed by the heat of the reaction. AUow the mixture to cool, and dissolve any insoluble material in 60-75 ml. of ether. If a solid insoluble in both the aqueous and ether layer appears at this point (it is probably the sparingly soluble salt of a primary amine, e.g., a long chain compound of the type CjH5(CH2) NHj), add 25 ml. of water and shake if it does not dissolve, filter it off. Separate the ether and aqueous layers. The ether layer will contain the unchanged tertiary amine and the sulphonamide of the secondary amine. Acidify the alkaline aqueous layer with dilute hydrochloric acid, filter off the sulphonamide of the primary amine, and recrystaUise it from dilute alcohol. Extract the ether layer with sufficient 5 per cent, hydrochloric acid to remove all the tertiary amine present. Evaporate the ether to obtain the sulphonamide of the secondary amine recrystaUise it from alcohol or dilute alcohol. FinaUy, render the hydrochloric acid extract alkaline by the addition of dilute sodium hydroxide solution, and isolate the tertiary amine. [Pg.651]

Two grams of the oU are saponified the portion insoluble in water separated by shaking with ether, and the aqueous solution neutralised with acetic acid. The solution is dUuted to 50 c.c. and 10 c.c. of cold saturated solution of barium chloride added. It is then warmed for two hours on a water-bath and allowed to cool. If a crystalline deposit is formed, the oil is to be considered adulterated, as the acids contained in normal lavender oil, acetic and butyric acids, give soluble barium salts. It is evident that this test will only detect those acids whose barium salts are insoluble. A more comprehensive test is therefore needed, as several other esters have since been employed for adulteration purposes. Glycerin acetate, prepared by the acetylation of glycerine, was first de-... [Pg.312]

The reaction is a sensitive one, but is subject to a number of interferences. The solution must be free from large amounts of lead, thallium (I), copper, tin, arsenic, antimony, gold, silver, platinum, and palladium, and from elements in sufficient quantity to colour the solution, e.g. nickel. Metals giving insoluble iodides must be absent, or present in amounts not yielding a precipitate. Substances which liberate iodine from potassium iodide interfere, for example iron(III) the latter should be reduced with sulphurous acid and the excess of gas boiled off, or by a 30 per cent solution of hypophosphorous acid. Chloride ion reduces the intensity of the bismuth colour. Separation of bismuth from copper can be effected by extraction of the bismuth as dithizonate by treatment in ammoniacal potassium cyanide solution with a 0.1 per cent solution of dithizone in chloroform if lead is present, shaking of the chloroform solution of lead and bismuth dithizonates with a buffer solution of pH 3.4 results in the lead alone passing into the aqueous phase. The bismuth complex is soluble in a pentan-l-ol-ethyl acetate mixture, and this fact can be utilised for the determination in the presence of coloured ions, such as nickel, cobalt, chromium, and uranium. [Pg.684]

Nickel tetranitrophthalocyanine can be reduced to nickel tetraaminophthalocyanine with tin(II) chloride342 or sodium sulfide.319 343 To achieve better solubility, long alkanoyl side chains can be attached by the reaction of the amino groups with carboxylic acid chlorides.342 Copper(ll) tetranitrophthalocyanine 1 is reduced to the tetraamino compound 2 with sodium suinae." "... [Pg.822]

In most of the studies discussed above, except for the meta-linked diamines, when the aromatic content (dianhydride and diamine chain extender), of the copolymers were increased above a certain level, the materials became insoluble and infusible 153, i79, lsi) solution to this problem with minimum sacrifice in the thermal properties of the products has been the synthesis of siloxane-amide-imides183). In this approach pyromellitic acid chloride has been utilized instead of PMDA or BTDA and the copolymers were synthesized in two steps. The first step, which involved the formation of (siloxane-amide-amic acid) intermediate was conducted at low temperatures (0-25 °C) in THF/DMAC solution. After purification of this intermediate thin films were cast on stainless steel or glass plates and imidization was obtained in high temperature ovens between 100 and 300 °C following a similar procedure that was discussed for siloxane-imide copolymers. Copolymers obtained showed good solubility in various polar solvents. DSC studies indicated the formation of two-phase morphologies. Thermogravimetric analysis showed that the thermal stability of these siloxane-amide-imide systems were comparable to those of siloxane-imide copolymers 183>. [Pg.35]

The sulfonylated and acylated PPO presents solubility characteristics which are completely different from those of the parent PPO. Table V presents the solubility of some modified structures compared to those of unmodified PPO. It is very important to note that, after sulfonylation, most of the polymers become soluble in dipolar aprotic solvents like dimethyl sulfoxide (DMSO), N,N— dimethylformamide (DMF) and N,N-dimethylacetamide (DMAC). At the same time it is interesting to mention that, while PPO crystallizes from methylene chloride solution, all the sulfonylated polymers do not crystallize and form indefinitely stable solutions in methylene chloride. Only some of the acetylated polymers become soluble in DMF and DMAC, and none are soluble in DMSO. The polymers acetylated with aliphatic acid chlorides such as propionyl chloride are also soluble in acetone. [Pg.56]

Catalysis in Transacylation Reactions. The principal objective of the study was to evaluate 4 as an effective organic soluble lipophilic catalyst for transacylation reactions of carboxylic and phosphoric acid derivatives in aqueous and two-phase aqueous-organic solvent media. Indeed 4 catalyzes the conversion of benzoyl chloride to benzoic anhydride in well-stirred suspensions of CH2CI2 and 1.0 M aqueous NaHCC>3 (Equations 1-3). The results are summarized in Table 1 where yields of isolated acid, anhydride and recovered acid chloride are reported. The reaction is believed to involve formation of the poly(benzoyloxypyridinium) ion intermediate (5) in the organic phase (Equation 1) and 5 then quickly reacts with bicarbonate ion and/or hydroxide ion at the interphase to form benzoate ion (Equation 2 and 3). Apparently most of the benzoate ion is trapped by additional 5 in the organic layer or at the interphase to produce benzoic anhydride (Equation 4), an example of normal phase-... [Pg.205]

The preparation of acetylenic ketones from soluble silver acetylenides and acid chlorides was reported in 1956 (Scheme 108).512 Analogously to that report, the reaction of silver acetylenides with acylpyridinium salts was reported to proceed effectively.513 This chemistry was applied to the synthesis of cotarnine derivatives, as exemplified in Scheme lQ9.514 514a... [Pg.476]

The reaction of Curtius, which is especially to be preferred in the case of the higher members on account of the favourable solubilities of the intermediate products, involves as its first stage the preparation of the hydrazide from an ester (or acid chloride). The hydrazide is then converted, usually very readily, by the action of nitrous acid into the azide. In many cases it is more convenient to prepare the azide by treating an acid chloride with sodium azide previously activated with hydrazine hydrate.1 Azides easily undergo thermal decomposition, the two azo nitrogen atoms being eliminated as elementary nitrogen. In this way, however, the same radicle is formed as was invoked above to explain the Hofmann reaction ... [Pg.155]

This method is mostly applicable to official compounds belonging to the class of esters, acid anhydrides, aldehydes and acid chlorides. In practice this method applies to such substances that normally react too slowly with the titrant because of their poor solubility which may be accomplished either by a heating process or by a precipitation method so as to convert the substance capable for reaction with the standard base. [Pg.103]

Previous work by us has led to the synthesis of silicon, germanium and tin polyethers utilizing Interfacial systems (for instance 5-9). The tin-cotton products should possess an analogous structure from previously reported similarities in reactivity of soluble cellulosic hydroxyls with organic acid chlorides... [Pg.383]


See other pages where Acid chlorides solubility is mentioned: [Pg.156]    [Pg.156]    [Pg.27]    [Pg.163]    [Pg.382]    [Pg.401]    [Pg.65]    [Pg.306]    [Pg.184]    [Pg.64]    [Pg.34]    [Pg.86]    [Pg.55]    [Pg.64]    [Pg.153]    [Pg.350]    [Pg.386]    [Pg.122]    [Pg.892]    [Pg.1399]    [Pg.137]    [Pg.517]    [Pg.77]    [Pg.185]    [Pg.401]    [Pg.321]    [Pg.401]    [Pg.81]    [Pg.200]    [Pg.422]    [Pg.93]    [Pg.51]    [Pg.172]    [Pg.180]    [Pg.214]    [Pg.216]    [Pg.343]   


SEARCH



Solubility chloride

© 2024 chempedia.info