Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid-catalyzed hydroxy methylations

Pyrrole has been condensed under alkaline conditions with formaldehyde to give products of either N- or C-hydroxymethylation (Scheme 22). Although acid-catalyzed hydroxy-methylation is not a practical possibility, by addition of a reducing agent to the reaction mixture overall reductive alkylation can be achieved (Scheme 23). [Pg.54]

The mercaptals obtained by the acid catalyzed reaction of J3-ketoesters, e.g., ethyl acetoacetate, with methyl thioglycolate (73) undergo the Dieckmann cyclization with alcoholic potassium hydroxide at lower temperatures to give ethyl 3-hydroxy-5-methyl-2-thiophenecarboxylate (74) in 75% yield. ° Besides ethyl acetoacetate, ethyl a-ethylacetoacetate, ethyl benzoyl acetate, and ethyl cyclopentanonecarboxylate were also used in this reaction/ It is claimed that /8-diketones, hydroxy- or alkoxy-methyleneketones, or /8-ketoaldehyde acetals also can be used in this reaction. From acetylacetone and thioglycolic acid, 3,5-dimethyl-2-thiophenecarboxyl-ic acid is obtained. ... [Pg.30]

Chiral oxazolidines 6, or mixtures with their corresponding imines 7, are obtained in quantitative yield from acid-catalyzed condensation of methyl ketones and ( + )- or ( )-2-amino-l-phcnylpropanol (norephedrine, 5) with azeotropic removal of water. Metalation of these chiral oxazolidines (or their imine mixtures) using lithium diisopropylamide generates lithioazaeno-lates which, upon treatment with tin(II) chloride, are converted to cyclic tin(II) azaenolates. After enantioselective reaction with a variety of aldehydes at 0°C and hydrolysis, ft-hydroxy ketones 8 are obtained in 58-86% op4. [Pg.600]

The literature on basic- and acid-catalyzed alkylation of phenol and of its derivatives is wide [1,2], since this class of reactions finds industrial application for the synthesis of several intermediates 2-methylphenol as a monomer for the synthesis of epoxy cresol novolac resin 2,5-dimethylphenol as an intermediate for the synthesis of antiseptics, dyes and antioxidants 2,6-dimethylphenol used for the manufacture of polyphenylenoxide resins, and 2,3,6-trimethylphenol as a starting material for the synthesis of vitamin E. The nature of the products obtained in phenol methylation is affected by the surface characteristics of the catalyst, since catalysts having acid features address the electrophilic substitution in the ortho and para positions with respect to the hydroxy group (steric effects in confined environments may however affect the ortho/para-C-alkylation ratio), while with basic catalysts the ortho positions become the... [Pg.347]

This gives tautomeric mixtures119 when the tert-butyl group is removed. The methyl ether has been used to obtain 3-hydroxy-2-carbonyl derivatives in the selenophene series.120 The unsubstituted 2-hydroxyselenophene system has been prepared by hydrogen peroxide oxidation of 2-selenophene-boronic acid.121 However, in the 5-methyl-substituted system deboronation became such an important side reaction that 5-methyl-2-hydroxyselenophene had to be prepared by acid-catalyzed dealkylation of 5-methyl-2-fert-butoxy-selenophene. Both 2-hydroxy- and 5-methyl-2-hydroxyselenophene exist mainly as 3-selenolene-2-ones (93) and for the 5-methyl derivative it was possible to isolate the / ,y-unsaturated form (92) and follow the tautomeric isomerization. The activation parameters thus obtained were compared with those for the corresponding furan and thiophene systems. [Pg.156]

Thermolysis of D-fructose in acid solution provides 11 and 2-(2-hydrox-yacetyl)furan (44) as major products. Earlier work had established the presence of 44 in the product mixtures obtained after acid-catalyzed dehydrations of D-glucose and sucrose. Eleven other products were identified in the D-fructose reaction-mixture, including formic acid, acetic acid, 2-furaldehyde, levulinic acid, 2-acetyl-3-hydroxyfuran (isomaltol), and 4-hydroxy-2-(hydroxymethyl)-5-methyl-3(2//)-furanone (59). Acetic acid and formic acid can be formed by an acid-catalyzed decomposition of 2-acetyl-3-hydroxyfuran, whereas levulinic acid is a degradation prod-uct of 11. 2,3-Dihydro-3,5-dihydroxy-6-methyl-4//-pyran-4-one has also been isolated after acid treatment of D-fructose.The pyranone is a dehydration product of the pyranose form of l-deoxy-D-eo f o-2,3-hexodiulose. In aqueous acid seems to be the major reaction product of the pyranone. [Pg.286]

An important antioxidant for many products is butylated hydroxytoluene (BHT), more properly named 4-methyl-2,6-di-t-butylphenol. Acid-catalyzed electrophilic aromatic substitution of a t-butyl cation at the activated positions ortho to the hydroxy group of /)-cresol yields this product, p-Cresol is obtained from coal tar or petroleum. [Pg.182]

Oikawa and Yonemitsu reported a general method for the synthesis of 2-hydroxy-carbazoles (529) by the acid-catalyzed cyclization of the p-keto sulfoxide 528 (511). The required p-keto sulfoxide was derived from nucleophilic attack of dimethyl sulfoxide on methyl 3-indolepropionate. [Pg.200]

Fig. 11 Natural rubber is produced from a side branch of the ubiquitous isoprenoid pathway, with 3-hydroxy-methyl-glutaryl-CoA (HMG-CoA) as the key intermediate derived from acetyl-CoA by the general mevalonic-acid pathway. Mevalonate diphosphate decarboxylase (MPP-D) produces IPP, which is isomeiized to DMAPP by IPP isomerase (IPI). IPP is then condensed in several steps with DMAPP to produce GPP, FPP and GGPP by the action of a trani-prenyltransferase (TPT). The cA-l,4-polymeiization that yields natural rubber is catalyzed by cA-prenyltransferase (CPT), which uses the non-allylic IPP as substrate. Reprinted from [248], with permission from Elsevier... Fig. 11 Natural rubber is produced from a side branch of the ubiquitous isoprenoid pathway, with 3-hydroxy-methyl-glutaryl-CoA (HMG-CoA) as the key intermediate derived from acetyl-CoA by the general mevalonic-acid pathway. Mevalonate diphosphate decarboxylase (MPP-D) produces IPP, which is isomeiized to DMAPP by IPP isomerase (IPI). IPP is then condensed in several steps with DMAPP to produce GPP, FPP and GGPP by the action of a trani-prenyltransferase (TPT). The cA-l,4-polymeiization that yields natural rubber is catalyzed by cA-prenyltransferase (CPT), which uses the non-allylic IPP as substrate. Reprinted from [248], with permission from Elsevier...
A similar type of acid-catalyzed condensation of aldehydes with 4-methylene-2-oxetanone (diketene), giving 4-oxo-6-methyl-l,3-dioxins, has been patented (73GEP2149650). However, other work has established that <5-hydroxy-/3-keto acids or unsaturated keto acids are formed as the principal products (equation 24) (78CPB3877, 78CL409). The latter reaction probably involves electrophilic attack of the protonated aldehyde on the nucleophilic exocyclic methylene carbon atom of the diketone. A closely related reaction of acetals with diketene, catalyzed by titanium tetrachloride, gives the corresponding <5-alkoxy-/3-keto esters (74CL1189). [Pg.380]

Biacetyl is produced by the dehydrogenation of 2,3-butanediol with a copper catalyst (290,291). Prior to the availability of 2,3-butanediol, biacetyl was prepared by the nitrosation of methyl ethyl ketone and the hydrolysis of the resultant oxime. Other commercial routes include passing vinylacetylene into a solution of mercuric sulfate in sulfuric acid and decomposing the insoluble product with dilute hydrochloric acid (292), by the reaction of acetal with formaldehyde (293), by the acid-catalyzed condensation of 1-hydroxyacetone with formaldehyde (294), and by fermentation of lactic acid bacterium (295—297). Acetoin [513-86-0] (3-hydroxy-2-butanone) is also coproduced in lactic acid fermentation. [Pg.498]

Cyclohexadienol was prepared by Rickborn in 1970 from reaction of the epoxide of 1,4-cyclohexadiene with methyl lithium.100 A hydrate of naphthalene, 1-hydroxy-1,2-dihydro-naphthalene was prepared by Bamberger in 1895 by allylic bromination of O-acylated tetralol (1-hydroxy-l,2,3,4-tetrahydronaphthalene) followed by reaction with base.101 Hydrates of naphthalene and other polycylic aromatics are also available from oxidative fermentation of dihydroaromatic molecules, which occurs particularly efficiently with a mutant strain (UV4) of Pseudomonas putida.102,103 The hydrates are alcohols and they undergo acid-catalyzed dehydration to form the aromatic molecule by the same mechanism as other alcohols, except that the thermodynamic driving force provided by the aromatic product makes deprotonation of the carbocation (arenonium ion) a fast reaction, so that in contrast to simple alcohols, formation of the carbocation is rate-determining (Scheme 6).104,105... [Pg.37]

Cyclic diene ether 93 underwent oxidative acetalization to produce corresponding 3-substituted acetals 100 and 101 (Scheme 17) <1995TL8263>. Further Lewis acid-catalyzed reduction with triethylsilane afforded corresponding 3-bromo- and 3-hydroxy-oxonenes (102 R = Br (68%) 103 R = OH (49%), respectively) together with 1 1 diastereomeric mixture of acyclic methyl ethers 104 (R = Br (18%) R = OH (13%)). [Pg.569]


See other pages where Acid-catalyzed hydroxy methylations is mentioned: [Pg.241]    [Pg.246]    [Pg.79]    [Pg.117]    [Pg.232]    [Pg.1032]    [Pg.175]    [Pg.165]    [Pg.1427]    [Pg.295]    [Pg.20]    [Pg.354]    [Pg.291]    [Pg.178]    [Pg.561]    [Pg.456]    [Pg.231]    [Pg.799]    [Pg.810]    [Pg.984]    [Pg.25]    [Pg.107]    [Pg.295]    [Pg.363]    [Pg.131]    [Pg.451]    [Pg.210]    [Pg.231]    [Pg.799]    [Pg.441]    [Pg.283]    [Pg.127]   


SEARCH



Acid-catalyzed hydroxy

© 2024 chempedia.info