Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid anhydrides conversions

A mixture of an acid anhydride and a ketone is saturated with boron trifluoride this is followed by treatment with aqueous sodium acetate. The quantity of boron trifluoride absorbed usually amounts to 100 mol per cent, (based on total mola of ketone and anhydride). Catalytic amounts of the reagent do not give satisfactory results. This is in line with the observation that the p diketone is produced in the reaction mixture as the boron difluoride complex, some of which have been isolated. A reasonable mechanism of the reaction postulates the conversion of the anhydride into a carbonium ion, such as (I) the ketone into an enol type of complex, such as (II) followed by condensation of (I) and (II) to yield the boron difluoride complex of the p diketone (III) ... [Pg.861]

Conversions of acid anhydrides to other carboxylic acid derivatives are illustrated m Table 20 2 Because a more highly stabilized carbonyl group must result m order for nucleophilic acyl substitution to be effective acid anhydrides are readily converted to carboxylic acids esters and amides but not to acyl chlorides... [Pg.842]

Conversion of Acid Anhydrides to Other Carboxylic Acid Derivatives... [Pg.843]

Oxidation of 17j5-acetoxy-5a-androstan-3-one (1) by chromium trioxide in acetic acid at 55-65° gives the 2,3-seco acid (2). Conversion of the seco acid to its anhydride followed by pyrolysis and distillation gives the A-nor-2-ketone (3) in 45% overall yield. Analogous reactions have been carried... [Pg.408]

The conversion of c>-hydroxyaryl ketones la to chromones 2a and/or coumarins 3a with aliphatic acid anhydrides in the presence of the sodium or potassium salt of the corresponding acid and the reaction between lb and aromatic acid anhydrides and the salt of the corresponding acid to form flavones 2b (Allan-Robinson) is called the Kostanecki-Robinson (K-R) reaction. ... [Pg.521]

Conversion of Carboxylic Acids into Acid Anhydrides... [Pg.795]

Conversion of Acid Halides into Anhydrides Nucleophilic acyl substitution reaction of an acid chloride with a carboxylate anion gives an acid anhydride. Both symmetrical and unsymmetrical acid anhydrides can be prepared in this way. [Pg.802]

Conversion of Acid Anhydrides into Esters Acetic anhydride is often used to prepare acetate esters from alcohols. For example, aspirin (acetylsalicylic acid) is prepared commercially by the acetylation of o-hydroxybenzoic acid (salicylic acid) with acetic anhydride. [Pg.807]

Conversion of Acid Anhydrides into Amides Acetic anhydride is also commonly used to prepare iV-substituted acetamides from amines. For example, acetaminophen, a drug used in over-the-counter analgesics such as Tylenol, is prepared by reaction of p-hydroxyaniline with acetic anhydride. Note that the more nucleophilic -NH2 group reacts rather than the less nucleophilic -OH group. [Pg.807]

Butadiene has the advantage of a relatively low heat of reaction (995 kJ/ mol compared with 1875 kJ/mol in the oxidation of benzene), but the disadvantage of a relatively high price compared with the other -C4 hydrocarbons. Good prospects has the n-butane route. Keeping the n-butane conversion at about 15%, the yield of maleic acid anhydride amounts to 50-60 mol %. [Pg.34]

Whereas conversion of sulfoxides to the corresponding a-acyloxysulfides by acid anhydrides, for example acetic anhydride, the Pummerer reaction [1], has been known for quite a time, the conversion of sulfoxides with silylating reagents via the unstable intermediate O-silyl compounds to a-silyloxysulfides, the Sila-Pummerer reaction is a relatively new reaction, which has recently been reviewed [1—4-]. [Pg.189]

The phosphinic isocyanates (116) and isothiocyanates (117) react with oxygen, nitrogen, and phosphorus nucleophiles by attack at carbon rather than phosphorus. Phenyl phosphonodichloridate has been recommended as a useful reagent for the activation (presumably by mixed anhydride formation) of carboxylic acids for conversion to amides and hydrazides. ... [Pg.119]

Catalysis in Transacylation Reactions. The principal objective of the study was to evaluate 4 as an effective organic soluble lipophilic catalyst for transacylation reactions of carboxylic and phosphoric acid derivatives in aqueous and two-phase aqueous-organic solvent media. Indeed 4 catalyzes the conversion of benzoyl chloride to benzoic anhydride in well-stirred suspensions of CH2CI2 and 1.0 M aqueous NaHCC>3 (Equations 1-3). The results are summarized in Table 1 where yields of isolated acid, anhydride and recovered acid chloride are reported. The reaction is believed to involve formation of the poly(benzoyloxypyridinium) ion intermediate (5) in the organic phase (Equation 1) and 5 then quickly reacts with bicarbonate ion and/or hydroxide ion at the interphase to form benzoate ion (Equation 2 and 3). Apparently most of the benzoate ion is trapped by additional 5 in the organic layer or at the interphase to produce benzoic anhydride (Equation 4), an example of normal phase-... [Pg.205]

Pyrrole is one of the most prominent heterocycles, having been known for more than 150 years, and it is the structural skeleton of several natural products, synthetic pharmaceuticals, and electrically conducting materials. A simple access to the pyrrole ring system involves the conversion of cyclic anhydrides into five-membered imides. Mortoni and coworkers have described the conversion of 2-methylquinoline-3,4-dicarboxylic acid anhydride to a quinoline-3,4-dicarboximide library by treatment of the anhydride with a diverse set of primary amines under microwave conditions (Scheme 6.180) [341]. The authors studied a range of different conditions, including dry media protocols (see Section 4.1) whereby the starting materials were adsorbed onto an inorganic support and then irradiated with microwaves. For the transforma-... [Pg.223]

Acyl-transfer reactions are some of the most important conversions in organic chemistry and biochemistry. Recent work has shown that adjacent cationic groups can also activate amides in acyl-transfer reactions. Friedel-Crafts acylations are known to proceed well with carboxylic acids, acid chlorides (and other halides), and acid anhydrides, but there are virtually no examples of acylations with simple amides.19 During studies related to unsaturated amides, we observed a cyclization reaction that is essentially an intramolecular acyl-transfer reaction involving an amide (eq 15). The indanone product is formed by a cyclization involving the dicationic species (40). To examine this further, the related amides 41 and 42 were studied in superacid promoted conversions (eqs 16-17). It was found that amide 42 leads to the indanone product while 41... [Pg.164]

The procedure for synthesizing sulfanilamide (a sulfa drug) is a multistep procedure as illustrated in Figure 13-50. The first step also works if you substitute an acyl chloride for the acid anhydride. The conversion of the amine to an amide converts the strong activator into a medium activator, limiting multiple attacks. The last step converts the amide back into an... [Pg.245]

In this paper we report the use of supported heteropoly acid (silicotungstic acid) and supported phosphoric acid catalysts for the acylation of industrially relevant aromatic feedstocks with acid anhydrides in the synthesis of aromatic ketones. In particular, we describe the acylation of thioanisole 1 with iso-butyric anhydride 2 to form 4-methyl thiobutyrophenone 3. The acylation of thioanisole with acetic anhydride has been reported in which a series of zeolites were used as catalysts. Zeolite H-beta was reported to have the highest activity of the zeolites studied (41 mol % conversion, 150°C) (2). [Pg.347]

As the loading of STA on the catalyst support is decreased, incomplete anhydride conversion is observed and significant hydrolysis of the anhydride to form iso-butyric acid is observed (Table 2). Use of silica supported phosphoric acid results in lower ketone yields and significant hydrolysis of the iso-butyric anhydride. Blank reactions (catalyst and anhydride, 90°C, 30 min) indicates that hydrolysis of anhydride is observed in the presence of these catalysts and may result from either dehydroxylation of the silica support or residual water in the catalyst, ffowever this reaction is slow (42%STA/silica, 44% conversion and 70%P[3PO4/silica, 86% conversion respectively). [Pg.349]

The most important reactions of carboxylic acids are the conversions to various carboxylic acid derivatives, e.g. acid chlorides, acid anhydrides and esters. Esters are prepared by the reaction of carboxylic acids and alcohols. The reaction is acid catalysed and is known as Fischer esterification (see Section 5.5.5). Acid chlorides are obtained from carboxylic acids by the treatment of thionyl chloride (SOCI2) or oxalyl chloride [(COCl)2], and acid anhydrides are produced from two carboxylic acids. A summary of the conversion of carboxylic acid is presented here. All these conversions involve nucleophilic acyl substitutions (see Section 5.5.5). [Pg.93]

Carboxylic acid anhydrides generally react with sulfur tetrafluoride in the same manner as carboxylic acids to give acid fluorides, then trifluoromethyl derivatives. Various cyclic anhydrides, which are particularly stable under acidic conditions, react without cleavage to give, in a stepwise fashion, difluoro lactones and a,a,a, a -tetrafluoro ethers. Conversely, the corresponding diacids are readily dehydrated by sulfur tetrafluoride to give anhydrides in the first step of the reaction. Therefore, in this section reactions of carboxylic acids and carboxylic acid anhydrides are discussed together. [Pg.349]

Fluorous biphase catalysis was also applied in Friedel-Crafts acylation with Yb tris(perfluoroalkanesulfonyl)methide catalysts with acid anhydrides.59 Of the aromatics studied, activated compounds and naphthalene (95% conversion) showed satisfactory reactivity. [Pg.412]

In trying to formulate a reaction mechanism for the catalysis, the well known reaction of aluminum alcoholates with carboxylic anhydrides was used as a basis (14). For example, phthalic anhydride, maleic anhydrides, and carbon dioxide, will react so that the acid anhydride pushes itself between the metal atom and the alkoxy groups, thus separating them. This results in forming neutral aluminum salts of the monoalkyl carboxylic acids. It is possible, of course, for the conversion to proceed incompletely, having two alkoxy groups bound to the aluminum, thus having only 1 mole of acid anhvdride react on 1 mole of aluminum alcoholate. [Pg.88]

However, it is often better to "activate" the carboxylic acid by conversion to an acyl chloride or an anhydride ... [Pg.975]


See other pages where Acid anhydrides conversions is mentioned: [Pg.74]    [Pg.115]    [Pg.216]    [Pg.951]    [Pg.209]    [Pg.71]    [Pg.259]    [Pg.49]    [Pg.392]    [Pg.650]    [Pg.118]    [Pg.456]    [Pg.99]    [Pg.306]    [Pg.410]    [Pg.147]    [Pg.24]    [Pg.124]   
See also in sourсe #XX -- [ Pg.999 ]




SEARCH



Anhydrides conversion

Nicotinic acid, conversion to anhydride

© 2024 chempedia.info