Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylene complexes reactions

Olefin and acetylene complexes of Au(I) can be prepared by direct iateraction of the unsaturated compounds with a Au(I) hahde (190,191). The resulting products, however, are not very stable and decompose at low temperatures. Reaction with Au(III) hahdes leads to halogenation of the unsaturated compound and formation of Au(I) complexes or polynuclear complexes with gold ia mixed oxidatioa states. [Pg.386]

Reaction between [W(RC=C)Cl(CO)2(py)2] (R = Ph, Me) with the anionic chelating Schiff base pyrrole-2-carboxaldehyde methylimine yields the cationic complexes [NEt4][W(RCCO)(NN)2(CO)] (where NN is the dianion of the pyrrole ligand). These complexes react with methyltriflate, forming the neutral acetylenic complexes [W(NN)2(CO)(RC=COMe)] (87OM1503). One of the pyrrolic Schiff bases is coordinated via the pyrrole and imino nitrogen atoms, and another one only via the imino nitrogen atom. [Pg.118]

Titanium-acetylene complexes 29 generated in situ from acetylenes, Ti(0-i-Pr)4 and /-PrMgX react with imines to form azatitanacyclopentenes 30 which then react with carbon monoxide under atmospheric pressure to provide pyrroles 31 <96TL7787>. This reaction, which utilizes commercially available reagents is an improvement over a related procedure via the corresponding zirconium complexes under 1500 psi CO <89JA776>. [Pg.100]

A different synthetic access to a 1 -metallacyclopropene, which can be a versatile organometallic synthon, is displayed in Scheme 33. The mono-alkyne derivatives of W(IV)-calix[4]arene are easily accessible through the thermal displacement of cyclohexene from 32 using the appropriate acetylenes. The reaction led to complexes 34 and 172-174. The proposed 3-metallacyclopropene has been confirmed from the spectroscopic and the X-ray data. The H NMR data reveal a cone conformation of the calixarene with a four-fold symmetry, for which the... [Pg.217]

More recently, Schrock has reported the formation of coordinatively unsaturated Ta and W carbyne complexes (124). Like unsaturated carbene complexes, these carbyne compounds are now established as being active intermediates in a number of catalytic reactions. The discovery of acetylene metathesis reactions catalyzed by carbyne complexes (3), for example, has generated considerable interest in this class of compound. [Pg.181]

While Cp2Zr(CO)(PPh3) was found to be more reactive toward acetylenes than Cp2Zr(CO)2 (2), no monocarbonyl-Tj2-acetylene complexes of zirconocene were observed in contrast to the reaction of acetylenes with Cp2Ti(CO)(PPh3) (42) (50). Instead the reaction of Cp2Zr(CO)(PPh3) with RC=CR (R = Et, Ph) led directly to the respective zirconacy-clopentadienes (58). [Pg.366]

A more complex reaction is involved in the cooligomerization of acetylenes and tert-butyl isocyanide using nickel acetate as the catalyst (Scheme 20)43 the nature of intermediate complexes leading to the formation of 2-cyano-5-terf-butylaminopyrroles has not been established. Cocyclization of tert-butyl isocyanide with coordinated hexafluoro-2-butyne gives rise to coordinated cyclopentadienone anils for molybdenum systems,44 hence the nature of acetylene substitutents and of the organometallic catalyst play crucial roles in these processes. The pyrrole products from the former reaction can be decomposed by sulfuric acid and the overall sequence provides a simple synthesis of 5-amino-2-cyanopyrroles (Scheme 20). [Pg.331]

Good yields of imidazoline derivatives have been obtained in the cocyclooligomerization of phenylacetylene with isocyanates and carbodiimides (Scheme 100).166 It has been demonstrated166 by labeling studies in the isocyanate reaction that the hydrogen shift is intramolecular and a mechanism accommodating this feature is illustrated in Scheme 101.166 The final step (85 - 86) in the proposed166 mechanism (Scheme 101) probably occurs via a coordinated acetylene complex and it is notable that related complexes... [Pg.364]

In another conceptually novel [5 + 2]-process, Tanino and co-workers synthesized cycloheptene derivatives by stereoselective [5 + 2]-cycloadditions involving hexacarbonyldicobalt-acetylene complexes as the five-carbon component and enol ethers as the two-carbon component (Schemes 22 and 23).60 61 The role of the dicobalthexacarbonyl complex is to facilitate formation and reaction of the propargyl cation putatively involved as an intermediate in this reaction. The dicobalthexacarbonyl moiety can be removed using various conditions (Scheme 24) to provide alkane 60, alkene 62, and anhydride 63. [Pg.615]

Although terminal acetylenes themselves do not form stable titanium—acetylene complexes upon reaction with 1, the reaction with terminal alkynes having a keto group at the 5- or y-position induces an intramolecular cyclization, apparently via the above titanium-acetylene complex to afford the four- and five-membered cycloalkanols, as shown in Eq. 9.6 [28]. [Pg.325]

It is also possible to carry out a substrate-controlled reaction with aldehydes in an asymmetric way by starting with an acetylene bearing an optically active ester group, as shown in Eq. 9.8 [22]. The titanium—acetylene complexes derived from silyl propiolates having a camphor-derived auxiliary react with aldehydes with excellent diastereoselectivity. The reaction thus offers a convenient entry to optically active Baylis—Hillman-type allyl alcohols bearing a substituent (3 to the acrylate group, which have hitherto proved difficult to prepare by the Baylis—Hillman reaction itself. [Pg.326]

In Section 9.2, intermolecular reactions of titanium—acetylene complexes with acetylenes, allenes, alkenes, and allylic compounds were discussed. This section describes the intramolecular coupling of bis-unsaturated compounds, including dienes, enynes, and diynes, as formulated in Eq. 9.49. As the titanium alkoxide is very inexpensive, the reactions in Eq. 9.49 represent one of the most economical methods for accomplishing the formation of metallacycles of this type [1,2]. Moreover, the titanium alkoxide based method enables several new synthetic transformations that are not viable by conventional metallocene-mediated methods. [Pg.342]

The reactions of complex 2a with ketones and aldehydes show a strong dependence on the substituents. With benzophenone, substitution of the silyl-substituted acetylene leads to the r]2-complex 58, which is additionally stabilized by a THF ligand. This complex can serve as an interesting starting material for other reactions. With benzaldehyde and acetophenone, the typical zirconadihydrofuran 59, akin to 2c, is obtained from a coupling reaction. This complex is unstable in the case of benzaldehyde and dimerizes, after elimination of bis(trimethylsilyl)acetylene, to yield 60. In this respect, it is similar to the above discussed complex 2c, since both of them show a tendency to eliminate the bis(trimethyl-silyl)acetylene. The reaction of methacrolein with complex 2a depends strongly on the solvent used [40]. [Pg.374]

This observation may well explain the considerable difference between metal-olefin and metal-acetylene chemistry observed for the trinuclear metal carbonyl compounds of this group. As with iron, ruthenium and osmium have an extensive and rich chemistry, with acetylenic complexes involving in many instances polymerization reactions, and, as noted above for both ruthenium and osmium trinuclear carbonyl derivatives, olefin addition normally occurs with interaction at one olefin center. The main metal-ligand framework is often the same for both acetylene and olefin adducts, and differs in that, for the olefin complexes, two metal-hydrogen bonds are formed by transfer of hydrogen from the olefin. The steric requirements of these two edgebridging hydrogen atoms appear to be considerable and may reduce the tendency for the addition of the second olefin molecule to the metal cluster unit and hence restrict the equivalent chemistry to that observed for the acetylene derivatives. [Pg.290]

Reaction of acetylenic complexes with triosmium dodecacarbonyl leads to a variety of products involving one, two, or three acetylenic units. As with ruthenium, for the monosubstituted alkynes, hydrogen transfer can occur to the metal cluster. Thus, Os3(CO)12 and phenyl-acetylene (L) yield, in refluxing benzene, the derivatives Os3(CO)10L, Os3(CO)10L2, Os3(CO)9L, and HOs3(CO)9(L-H). The general chemistry is summarized in Scheme 2 (131). [Pg.294]

Figure 10. The reaction mechanism of acetylene thioboration reactions catalyzed by Pd(0) complexes calculated by Morokuma and co-workers. Figure 10. The reaction mechanism of acetylene thioboration reactions catalyzed by Pd(0) complexes calculated by Morokuma and co-workers.
Can Pt(0) complexes serve as active catalysts for the alkyne thioboration reactions Morokuma and co-workers also carried out calculations on the mechanism of the Pt(0)-catalyzed acetylene thioboration reaction with a smaller model HS-B(OH)2. They found that the reductive elimination in the last step (from TH5 to TH6) needs to overcome a very high barrier of 27.9 kcal/mol because the Pt(II) analog of TH5 is calculated to be very stable. It is predicted that the Pt(0) complex is not a good catalyst for thioboration reactions. [Pg.210]

Similar reactions applied to transition metal-acetylene complexes appear capable of separating the 2 carbon atoms originally linked by the acetylenic triple bond 18). Thermal isomerization of metal-acetylene complexes may achieve the same result, showing how metal clusters can catalyze scrambling reactions of acetylenes, e.g.. [Pg.48]

Philipsborn and coworkers [83] have successfully used the Co signals in the substituted Co(i)Cp complexes 72, in connection with understanding the mechanism of pyridine/acetylene trimerization reactions. The metal resonance was found to vary strongly with the catalyst structure and a correlation of d Co with reactivity was observed. [Pg.20]

Unlike zirconium, the group IV metal titanium does not form the hydrometalation product but rather a (r -C5Q)-complex. The first titanium-fullerene complex 1 was prepared by reaction of the bis(trimethylsilyl)-acetylene complex of titanocene with equimolar amounts of Cjq (Scheme 7.1). [Pg.234]

Chromatography cyclophosphazenes, 21 46, 59 technetium, 11 48-49 Chromites, as spinel structures, 2 30 Chromium, see Tetranuclear d-block metal complexes, chromium acetylene complexes of, 4 104 alkoxides, 26 276-283 bimetallics, 26 328 dimeric cyclopentdienyl, 26 282-283 divalent complexes, 26 282 nitrosyls, 26 280-281 trivalent complexes, 26 276-280 adamantoxides, 26 320 di(/ >rt-butyl)methoxides, 26 321-325 electronic spectra, 26 277-279 isocyanate insertion, 26 280 substitution reactions, 26 278-279 [9]aneS, complexes, 35 11 atom... [Pg.47]


See other pages where Acetylene complexes reactions is mentioned: [Pg.255]    [Pg.386]    [Pg.189]    [Pg.339]    [Pg.179]    [Pg.172]    [Pg.100]    [Pg.358]    [Pg.113]    [Pg.352]    [Pg.253]    [Pg.321]    [Pg.321]    [Pg.322]    [Pg.324]    [Pg.350]    [Pg.357]    [Pg.358]    [Pg.30]    [Pg.41]    [Pg.291]    [Pg.332]    [Pg.252]    [Pg.35]    [Pg.52]    [Pg.92]   
See also in sourсe #XX -- [ Pg.404 , Pg.405 , Pg.406 , Pg.407 , Pg.408 ]




SEARCH



Acetylene complexes

Acetylene complexes catalytic reactions

Acetylene complexes substitution reactions

Acetylene reactions

Acetylenic complexes

Platinum complexes, substitution reactions acetylenes

Reactions between Nickel Carbonyl and Acetylenes which Yield Complexes

Reactions of Acetylene Complexes

© 2024 chempedia.info