Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetoacetates hydrogenation

I.POXIDATION, ASYMMETRIC (--)-Benzylquininium chloride. f-Butyl hydroperoxide-Vanadyl acetoacetate. Hydrogen peroxide-1,1,3,3-Tetrachloro-aceione. (SM2-Hydroxy-N,N-diinethyl-propanamidc-OtO )oxodiperoxymolyb-denum(VI). [Pg.468]

Etbyl a-(2-carbometboxyetbyl)-a-(2>cyanoethyl)acetoacetate hydrogenated 10 brs. with Raney-Ni W 2 in abs. etbanol containing trietbylamine under an initial pressure of 50 atm. at 100-120° (reached during 25 min.) 10-carbethoxy-zl8,9.octahydro-7-quinolone. Y 70-80%. G. A. Grob and H. J. Wilkens, Helv. 48, 808 (1965). [Pg.231]

The parent acid is unstable and always reverts to the lactone form shown. It is reconverted to acetoacetic ester by boiling alcoholic potassium hydroxide. Reduced by hydrogen iodide to dimethylpyrone. [Pg.127]

Mono and Di-iubstitution Derivatives. The enolic sodium derivative of ethyl acetoacetate (E) is prepared by mixing ethanolic solutions of the ester and of sodium ethoxide. It should not be prepared by the direct action of metallic sodium on the ester, as the reaction is slow and the nascent hydrogen evolved reduces some of the ester to ethyl p4iydroxy- butyrate, CH3CH(OH)CHjCOOEt. [Pg.269]

The formation of ethyl acetoacetate is an example of a general reaction knowu as the acetoacetlc ester condensation in which an ester having hydrogen on the a-carbon atom condenses with a second molecule of the same ester or with another ester (which may or may not have hydrogen on the a-carbon atom) in the presence of a basic catalyst (sodium, sodium ethoxide, sodamide, sodium triphenylmethide) to form a p-keto-ester. The mechanism of the reaction may be illustrated by the condensation of ethyl acetate with another molecule of ethyl acetate by means of sodium ethoxide. ... [Pg.476]

The acetoacetic ester condensation (involving the acylation of an ester by an ester) is a special case of a more general reaction term the Claisen condensation. The latter is the condensation between a carboxylic ester and an ester (or ketone or nitrile) containing an a-hydrogen atom in the presence of a base (sodium, sodium alkoxide, sodamide, sodium triphenylmethide, etc.). If R—H is the compound containing the a- or active hydrogen atom, the Claisen condensation may be written ... [Pg.477]

Malonic ester, like acetoacetic ester (Section 111,151), when treated with an equivalent of sodium ethoxide, forms a mono-sodium derivative, which is of great value in synthetical work. The simplest formulation of the reaction is to r rd it as an attack of the basic ethoxide ion on a hydrogen atom in the CH, group the hydrogen atoms in the CHj group are activated by the presence of the two adjacent carbethoxyl groups ... [Pg.483]

Esters of dicarboxyUc acids having hydrogen on tbe 8 or e carbon atoms undergo intramolecular cyclisation when heated with sodium or with sodium ethoxide. This cyclisation is known as the Dieckmann reaction. It is essentially an application of the Claiseu (or acetoacetic eater) condensation to the formation of a ring system the condensation occurs internally to produce s... [Pg.856]

The properties of diethyl malonate that make the malonic ester synthesis a useful procedure are the same as those responsible for the synthetic value of ethyl acetoacetate The hydrogens at C 2 of diethyl malonate are relatively acidic and one is readily removed on treatment with sodium ethoxide... [Pg.897]

Acetoiicetyliition Reactions. The best known and commercially most important reaction of diketene is the aceto acetylation of nucleophiles to give derivatives of acetoacetic acid (Fig. 2) (1,5,6). A wide variety of substances with acidic hydrogens can be acetoacetylated. This includes alcohols, amines, phenols, thiols, carboxyHc acids, amides, ureas, thioureas, urethanes, and sulfonamides. Where more than one functional group is present, ring closure often follows aceto acetylation, giving access to a variety of heterocycHc compounds. These reactions often require catalysts in the form of tertiary amines, acids, and mercury salts. Acetoacetate esters and acetoacetamides are the most important industrial intermediates prepared from diketene. [Pg.478]

Methylsuccinic acid has been prepared by the pyrolysis of tartaric acid from 1,2-dibromopropane or allyl halides by the action of potassium cyanide followed by hydrolysis by reduction of itaconic, citraconic, and mesaconic acids by hydrolysis of ketovalerolactonecarboxylic acid by decarboxylation of 1,1,2-propane tricarboxylic acid by oxidation of /3-methylcyclo-hexanone by fusion of gamboge with alkali by hydrog. nation and condensation of sodium lactate over nickel oxide from acetoacetic ester by successive alkylation with a methyl halide and a monohaloacetic ester by hydrolysis of oi-methyl-o -oxalosuccinic ester or a-methyl-a -acetosuccinic ester by action of hot, concentrated potassium hydroxide upon methyl-succinaldehyde dioxime from the ammonium salt of a-methyl-butyric acid by oxidation with. hydrogen peroxide from /9-methyllevulinic acid by oxidation with dilute nitric acid or hypobromite from /J-methyladipic acid and from the decomposition products of glyceric acid and pyruvic acid. The method described above is a modification of that of Higginbotham and Lapworth. ... [Pg.56]

Hydrogen peroxide - dilute aqueous E Acetoacetic ester D... [Pg.254]

Ethylmalonic Acid.—Like acetoacetic ester (see p. 83), diethylmalonate contains the gioup CO.CHj.CO. By the action of sodium or sodium alroholate, the hydrogen atoms of the methylene group are successively replaceable by sodium. The sodium atoms are in turn replaceable by alkyl or acyl groups. Thus, in the present preparation, ethyl malonic ester is obtained by the action of ethyl iodide on the monosodium compound. If this substance be treated with a second molecule of sodium alcoholate and a second molecule of alkyl iodide, a second radical would be in roduced, and a compound formed of the general formula... [Pg.256]

Carboxylic esters 1 that have an a-hydrogen can undergo a condensation reaction upon treatment with a strong base to yield a /3-keto ester 2. This reaction is called the Claisen ester condensation or acetoacetic ester condensation, the corresponding intramolecular reaction is called the Dieckmann condensation ... [Pg.55]

Condensation of ethyl acetoacetate with phenyl hydrazine gives the pyrazolone, 58. Methylation by means of methyl iodide affords the prototype of this series, antipyrine (59). Reaction of that compound with nitrous acid gives the product of substitution at the only available position, the nitroso derivative (60) reduction affords another antiinflammatory agent, aminopyrine (61). Reductive alkylation of 61 with acetone in the presence of hydrogen and platinum gives isopyrine (62). Acylation of 61 with the acid chloride from nicotinic acid affords nifenazone (63). Acylation of 61 with 2-chloropropionyl chloride gives the amide, 64 displacement of the halogen with dimethylamine leads to aminopropylon (65). ... [Pg.234]

Cyclization of the two pendant alkyl side chains on barbiturates to form a spiran is consistent with sedative-hypnotic activity. The synthesis of this most complex barbiturate starts by alkylation of ethyl acetoacetate with 2-chloropentan-3-one to give 152. Hydrolysis and decarboxylation under acidic conditions gives the diketone, 153. This intermediate is then reduced to the diol (154), and that is converted to the dibromide (155) by means of hydrogen bromide. Double Internal alkylation of ethyl... [Pg.275]

Urea maybe reacted with acetoacetic ester and that product nitrated to give 5-nitro-orotec acid That is hydrogenated, then reacted with urea and potassium cyanate to give tetrahydroxypy-imidopyrimidine. The tetrahydroxy compound Is converted to the tetrachloro compound POCI3. Reaction with diethanolamine and then with piperidine gives dipyridamole. [Pg.525]

A mixture of 4.98 g of acetoacetic acid N-benzyl-N-methylaminoethyl ester, 2.3 g of aminocrotonic acid methyl ester, and 3 g of m-nitrobenzaldehyde was stirred for 6 hours at 100°C in an oil bath. The reaction mixture was subjected to a silica gel column chromatography (diameter 4 cm and height 25 cm) and then eluted with a 20 1 mixture of chloroform and acetone. The effluent containing the subject product was concentrated and checked by thin layer chromatography. The powdery product thus obtained was dissolved in acetone and after adjusting the solution with an ethanol solution saturated with hydrogen chloride to pH 1 -2, the solution was concentrated to provide 2 g of 2,6-dimethyl-4-(3 -nitrophenyl)-1,4-dihydropyridlne-3,5-dicarboxylic acid 3-methylester-5- -(N-benzyl-N-methylamino)ethyl ester hydrochloride. The product thus obtained was then crystallized from an acetone mixture, melting point 136°Cto 140°C (decomposed). [Pg.1070]

Ethyl 3-oxobutanoate, commonly called ethyl acetoacetate or ace tome tic ester, is much like malonic ester in that its ct hydrogens are flanked by two carbonyl groups. It is therefore readily converted into its enolate ion, which can be alkylated by reaction with an alkyl halide. A second alkylation can also be carried out if desired, since acetoacetic ester has two acidic a hydrogens. [Pg.859]

The three-step sequence of 0) enolate ion formation, (2) alkylation, and (3) hydrolvsis/decarboxylation is applicable to all /Tketo esters with acidic a hydrogens, not just to acetoacetic ester itself. For example, cyclic /3-keto esters such as ethyl 2-oxocycIohexanecarboxylate can be alkylated and decarboxy-lated to give 2-substituted cyclohexanones. [Pg.860]

Alpha hydrogen atoms of carbonyl compounds are weakly acidic and can be removed by strong bases, such as lithium diisopropylamide (LDA), to yield nucleophilic enolate ions. The most important reaction of enolate ions is their Sn2 alkylation with alkyl halides. The malonic ester synthesis converts an alkyl halide into a carboxylic acid with the addition of two carbon atoms. Similarly, the acetoacetic ester synthesis converts an alkyl halide into a methyl ketone. In addition, many carbonyl compounds, including ketones, esters, and nitriles, can be directly alkylated by treatment with LDA and an alkyl halide. [Pg.866]

The situation can be summarized by saying that a mixed aldol reaction leads to a mixture of products unless one of the partners either has no a hydrogens but is a good electrophilic acceptor (such as benzaldehyde) or is an unusually acidic nucleophilic donor (such as ethyl acetoacetate). [Pg.886]

Esters, like aldehydes and ketones, are weakly acidic. When an ester with an a- hydrogen is treated with 1 equivalent of a base such as sodium ethoxide, a reversible carbonyl condensation reaction occurs to yield a /3-keto ester. For example, ethyl acetate yields ethyl acetoacetate on base treatment. This reaction between two ester molecules is known as the Claisen condensation reaction. (We ll use ethyl esters, abbreviated "Et," for consistency, but other esters will also work.)... [Pg.888]

Another alternative for preparing a primary amine from an alkyl halide is the Gabriel amine synthesis, which uses a phthalimide alkylation. An imide (—CONHCO—) is similar to a /3-keto ester in that the acidic N-H hydrogen is flanked by two carbonyl groups. Thus, imides are deprotonated by such bases as KOH, and the resultant anions are readily alkylated in a reaction similar to the acetoacetic ester synthesis (Section 22.7). Basic hydrolysis of the N-alkylated imide then yields a primary amine product. The imide hydrolysis step is analogous to the hydrolysis of an amide (Section 21.7). [Pg.929]


See other pages where Acetoacetates hydrogenation is mentioned: [Pg.142]    [Pg.918]    [Pg.142]    [Pg.918]    [Pg.248]    [Pg.30]    [Pg.266]    [Pg.854]    [Pg.48]    [Pg.909]    [Pg.380]    [Pg.383]    [Pg.164]    [Pg.87]    [Pg.28]    [Pg.428]    [Pg.455]    [Pg.909]    [Pg.108]    [Pg.524]    [Pg.90]    [Pg.75]    [Pg.74]    [Pg.75]   
See also in sourсe #XX -- [ Pg.8 , Pg.149 ]

See also in sourсe #XX -- [ Pg.8 , Pg.149 ]




SEARCH



Acetoacetic acid hydrogenation

Asymmetric hydrogenations acetoacetate

Enantioselective hydrogenation of methyl acetoacetate

Hydrogenation of methyl acetoacetate

Methyl acetoacetate hydrogenation

© 2024 chempedia.info