Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Abstraction, of hydrogen

Radical substitution reactions by iodine are not practical because the abstraction of hydrogen from hydrocarbons by iodine is endothermic, even for stable radicals. The enthalpy of the overall reaction is also slightly endothermic. Thus, because of both the kinetic problem excluding a chain reaction and an unfavorable equilibrium constant for substitution, iodination cannot proceed by a radical-chain mechanism. [Pg.705]

Product mixtures from radical-chain addition of hydrogen chloride to alkenes are much more complicated than is the case for addition of hydrogen bromide. The problem is that the rate of abstraction of hydrogen from hydrogen chloride is not fast relative to the rate of addition of the alkyl radical to the alkene. This results in the formation of low-... [Pg.711]

In this section we shall restrict ourselves to abstraction of hydrogen atoms by oxy radicals since comparative data are available. Many aspects of the conclusions reached will be valid for nitrogen radicals as well. [Pg.239]

Carboxylic acids react with xenon difluoride to produce unstable xenon esters The esters decarboxylate to produce free radical intermediates, which undergo fluonnation or reaction with the solvent system Thus aliphatic acids decarboxylate to produce mainly fluoroalkanes or products from abstraction of hydrogen from the solvent Perfluoro acids decarboxylate in the presence of aromatic substrates to give perfluoroalkyl aromatics Aromatic and vinylic acids do not decarboxylate [91] (equation 51)... [Pg.161]

The first step in the overall process is believed to involve abstraction of hydrogen by chlorine atom, followed by reaction of the ensuing radical with Ch. [Pg.239]

The results are consistent with the rate-determining step being addition of the aryl radical to the aromatic ring, Eq. (9). Support for this mechanism is derived from the results of three other studies (a) When A -nitrosoacetanilide is decomposed in pyridine, the benzene formed by abstraction of hydrogen from pyridine by phenyl radical accounts for only 1 part in 120 of the reaction leading to phenyl-pyridines. (b) 9,9, 10,lCK-Tetrahydro-10,10 -diphenyl-9,9 -bianthryl is formed in the reaction between phenyl radicals and anthracene, probably by the addition mechanism in Eq. (11). Adducts are also formed in the reactions of benzyl radicals with anthracene- and acridine. ... [Pg.137]

The competitive method employed for determining relative rates of substitution in homolytic phenylation cannot be applied for methylation because of the high reactivity of the primary reaction products toward free methyl radicals. Szwarc and his co-workers, however, developed a technique for measuring the relative rates of addition of methyl radicals to aromatic and heteroaromatic systems. - In the decomposition of acetyl peroxide in isooctane the most important reaction is the formation of methane by the abstraction of hydrogen atoms from the solvent by methyl radicals. When an aromatic compound is added to this system it competes with the solvent for methyl radicals, Eqs, (28) and (29). Reaction (28) results in a decrease in the amount... [Pg.161]

If a vinyl monomer is polymerized in the presence of cellulose by a free radical process, a hydrogen atom may be abstracted from the cellulose by a growing chain radical (chain transfer) or by a radical formed by the polymerization catalyst (initiator). This leaves an unshared electron on the cellulose chain that is capable of initiating grafting. As cellulose is a very poor transfer agent [10], very little copolymer results from the abstraction of hydrogen atoms by a growing chain radical. The... [Pg.529]

Based on the ESR studies of Ce(IV) ion-BzyAcAc-MNP, Ce(IV) ion BzAc-MNP systems as mentioned before, the grafting reaction of P(St-CH2-AcAc) will take place on the methene carbon of 1,3-dikeone via the abstraction of hydrogen by the Ce(I V) ion to form radicals and then initiate monomer graft copolymerization. The initiation mechanism of graft copolymerization is proposed in Scheme (10). [Pg.550]

Hydride groups can be introduced by various methods [113], either abstraction of hydrogen from a solvent or a reducing agent, or by oxidative addition ... [Pg.127]

The differences in rate for the two positions of naphthalene show clearly that an additional-elimination mechanism may be ruled out. On the other hand, the magnitude of the above isotope effect is smaller than would be expected for a reaction involving rate-determining abstraction of hydrogen, so a mechanism involving significant internal return had been proposed, equilibria (239) and (240), p. 266. In this base-catalysed (B-SE2) reaction both k and k 2 must be fast in view of the reaction path symmetry. If diffusion away of the labelled solvent molecule BH is not rapid compared with the return reaction kLt a considerable fraction of ArLi reacts with BH rather than BH, the former possibility leading to no nett isotope effect. Since the diffusion process is unlikely to have an isotope effect then the overall observed effect will be less than that for the step k. ... [Pg.273]

The influence of substituents in Ar1 is characterized by negative p values (plot based on ordinary Hammett a constants)208. Reactions involving other types of phosphorus nucleophiles (e.g. PPh2Alk)208 and ArS02 ions as nucleophiles have also been studied209. The work has been extended to the study of a-azidosulfones but the reaction does not turn out to be analogous210. There is base-catalyzed abstraction of hydrogen ion from the a-carbon atom. [Pg.529]

For a review that lists many rate constants for abstraction of hydrogen at various positions of many molecules, see Hendry, D.G. Mill, T. Piszkiewicz, L. Howard, J.A. Eigenmann, H.K. J. Phys. Chem. Ref. Data, 1974, 3, 937 Roberts, B.P. Steel, A.J. Tetrahedron Lett., 1993, 34, 5167. See Tanko, J.M. Blackett, J.F. J. Chem. Soc., Perkin Trans. 2,1996, 1775 for the absolute rate constants for abstraction of chlorine by alkyl radicals. [Pg.947]

The kinetic parameters are E = 6.3 kcal.mole" and AS = —38.4 eu, and at 25 °C the reaction exhibits a primary kinetic isotope effect of 6.6. When 0-labelled MnO was employed, no labelled oxygen appeared in the benzophenone. The mechanism involves abstraction of hydrogen, either as a hydride ion or a hydrogen atom, from the anion of the alcohol... [Pg.308]

The generation of radicals from lipids appear to be dependent on the abstraction of hydrogen by other radicals. Consistent with this idea is the observation that either lipid peroxidation or anoxia can cause a release of free arachidonic acid fix>m culture cells, and this release can be blocked by antioxidants (Braughler et al., 1985, 1988). [Pg.76]

Many compounds that damage DNA via radical intermediates have been identified. Some of the agents, such as bleomycin and the enediynes, damage DNA primarily through abstraction of hydrogen atoms. ° In these cases, chemical reactions are directed to certain positions on the DNA backbone by noncovalent binding that places the reactive intermediates in close proximity to particular deoxyribose sugar residues. Similar to the reactions of HO described above, small radicals, such as... [Pg.362]

This comparison suggests that of these two similar reactions, only alkene additions are likely to be a part of an efficient radical chain sequence. Radical additions to carbon-carbon double bonds can be further enhanced by radical stabilizing groups. Addition to a carbonyl group, in contrast, is endothermic. In fact, the reverse fragmentation reaction is commonly observed (see Section 10.3.6) A comparison can also be made between abstraction of hydrogen from carbon as opposed to oxygen. [Pg.956]

Will the solvent react with the excited state to yield undesirable side-products Often there is a real possibility that the solvent will enter into the picture through reaction with the excited solute. A common example of this is the abstraction of hydrogen atoms from solvents by excited ketones. Several solvents often used for a preliminary examination due to their relative inertness are benzene, /-butanol, carbon disulfide, carbon tetrachloride, and cyclohexane. [Pg.332]


See other pages where Abstraction, of hydrogen is mentioned: [Pg.115]    [Pg.319]    [Pg.348]    [Pg.455]    [Pg.144]    [Pg.703]    [Pg.712]    [Pg.65]    [Pg.301]    [Pg.141]    [Pg.550]    [Pg.99]    [Pg.71]    [Pg.108]    [Pg.49]    [Pg.897]    [Pg.901]    [Pg.1392]    [Pg.170]    [Pg.872]    [Pg.230]    [Pg.31]    [Pg.28]    [Pg.75]    [Pg.351]    [Pg.958]    [Pg.84]    [Pg.263]    [Pg.343]    [Pg.60]   
See also in sourсe #XX -- [ Pg.384 ]

See also in sourсe #XX -- [ Pg.384 ]




SEARCH



Hydrogen abstraction

© 2024 chempedia.info