Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorption mass transfer coefficient

It is important to understand that when chemical reactions are involved, this definition of Cl is based ou the driving force defined as the difference between the couceutratiou of un reacted solute gas at the interface and in the bulk of the liquid. A coefficient based ou the total of both uureacted and reached gas could have values. smaller than the physical-absorption mass-transfer coefficient /c . [Pg.620]

When it is known that Hqg varies appreciably within the tower, this term must be placed inside the integr in Eqs. (5-277) and (5-278) for accurate calculations of hf. For example, the packed-tower design equation in terms of the overall gas-phase mass-transfer coefficient for absorption would be expressed as follows ... [Pg.603]

According to this analysis one can see that for gas-absorption problems, which often exhibit unidirectional diffusion, the most appropriate driving-force expression is of the form y — y tyBM,. ud the most appropriate mass-transfer coefficient is therefore kc- This concept is to he found in all the key equations for the design of mass-transfer equipment. [Pg.604]

To determine the mass-transfer rate, one needs the interfacial area in addition to the mass-transfer coefficient. For the simpler geometries, determining the interfacial area is straightforward. For packed beds of particles a, the interfacial area per volume can be estimated as shown in Table 5-27-A. For packed beds in distillation, absorption, and so on in Table 5-28, the interfacial area per volume is included with the mass-transfer coefficient in the correlations for HTU. For agitated liquid-liquid systems, the interfacial area can be estimated... [Pg.606]

Extrapolation of KgO data for absorption and stripping to conditions other than those for which the origin measurements were made can be extremely risky, especially in systems involving chemical reactions in the liquid phase. One therefore would be wise to restrict the use of overall volumetric mass-transfer-coefficient data to conditions not too far removed from those employed in the actual tests. The most reh-able data for this purpose would be those obtained from an operating commercial unit of similar design. [Pg.625]

Traditional Design Method The traditionally employed conventional procedure for designing packed-tower gas-absorption systems involving chemical reactions makes use of overall volumetric mass-transfer coefficients as defined by the equation... [Pg.1364]

In 1966, in a paper that now is considered a classic, Danckwerts and Gillham [Tmns. Inst. Chem. Eng., 44, T42 (1966)] showed that data taken in a small stirred-ceU laboratoiy apparatus could be used in the design of a packed-tower absorber when chemical reactions are involved. They showed that if the packed-tower mass-transfer coefficient in the absence of reaction (/cf) can be reproduced in the laboratory unit, then the rate of absorption in the l oratoiy apparatus will respond to chemical reactions in the same way as in the packed column even though the means of agitating the hquid in the two systems might be quite different. [Pg.1366]

Note that the product of the mass-transfer coefficient and the interfacial area is a volumetric coefficient and obviates the need for a value of the interfacial area. While areas for mass transfer on plates have been measured, the experimental contacting equipment cuffered significantly from that used for commercial distillation or gas absorption, and the reported areas are considered unreliable for design purposes. [Pg.1382]

Note that the group on the left side of Eq. (14-182) is dimensionless. When turbulence promoters are used at the inlet-gas seclion, an improvement in gas mass-transfer coefficient for absorption of water vapor by sulfuric acid was obsei ved by Greenewalt [Ind. Eng. Chem., 18, 1291 (1926)]. A falhug off of the rate of mass transfer below that indicated in Eq. (14-182) was obsei ved by Cogan and Cogan (thesis, Massachusetts Institute of Technology, 1932) when a cauTiiug zone preceded the gas inlet in ammonia absorption (Fig. 14-76). [Pg.1402]

FIG, 14-77 Mass-transfer coefficients versus average gas velocity—HCl absorption, wetted-wall column. To convert pound-moles per hour-square foot-atmosphere to Idlogram-moles per second-square meter-atmosphere, multiply by 0.00136 to convert pounds per hour-square foot to kilograms per second-square meter, multiply by 0.00136 to convert feet to meters, multiply by 0.305 and to convert inches to milhmeters, multiply by 25.4. [Dohratz et at, Chem. Eng. Prog., 49, 611 (1953).]... [Pg.1403]

Reaction between an absorbed solute and a reagent reduces the equilibrium partial pressure of the solute, thus increasing the rate of mass transfer. The mass-transfer coefficient hkewise is enhanced, which contributes further to increased absorption rates. Extensive theoretical analyses of these effects have been made, but rather less experimental work and design guidehnes. [Pg.2105]

For purely physical absorption, the mass-transfer coefficients depend on trie hydrodynamics and the physical properties of the phases. Many correlations exist for example, that of Dwivedi and Upadhyay (Ind. Eng. Chem. Proc. De.s. izDev.,... [Pg.2106]

With a reactive solvent, the mass-transfer coefficient may be enhanced by a factor E so that, for instance. Kg is replaced by EKg. Like specific rates of ordinary chemical reactions, such enhancements must be found experimentally. There are no generalized correlations. Some calculations have been made for idealized situations, such as complete reaction in the liquid film. Tables 23-6 and 23-7 show a few spot data. On that basis, a tower for absorption of SO9 with NaOH is smaller than that with pure water by a factor of roughly 0.317/7.0 = 0.045. Table 23-8 lists the main factors that are needed for mathematical representation of KgO in a typical case of the absorption of CO9 by aqueous mouethauolamiue. Figure 23-27 shows some of the complex behaviors of equilibria and mass-transfer coefficients for the absorption of CO9 in solutions of potassium carbonate. Other than Henry s law, p = HC, which holds for some fairly dilute solutions, there is no general form of equilibrium relation. A typically complex equation is that for CO9 in contact with sodium carbonate solutions (Harte, Baker, and Purcell, Ind. Eng. Chem., 25, 528 [1933]), which is... [Pg.2106]

For physical absorption, values of the mass-transfer coefficients may not vary greatly, so a mean value could be adequate and coiild be taken outside the integral sign, but for reactive absorption the variation usually is too great. [Pg.2107]

Two complementai y reviews of this subject are by Shah et al. AIChE Journal, 28, 353-379 [1982]) and Deckwer (in de Lasa, ed.. Chemical Reactor Design andTechnology, Martinus Nijhoff, 1985, pp. 411-461). Useful comments are made by Doraiswamy and Sharma (Heterogeneous Reactions, Wiley, 1984). Charpentier (in Gianetto and Silveston, eds.. Multiphase Chemical Reactors, Hemisphere, 1986, pp. 104—151) emphasizes parameters of trickle bed and stirred tank reactors. Recommendations based on the literature are made for several design parameters namely, bubble diameter and velocity of rise, gas holdup, interfacial area, mass-transfer coefficients k a and /cl but not /cg, axial liquid-phase dispersion coefficient, and heat-transfer coefficient to the wall. The effect of vessel diameter on these parameters is insignificant when D > 0.15 m (0.49 ft), except for the dispersion coefficient. Application of these correlations is to (1) chlorination of toluene in the presence of FeCl,3 catalyst, (2) absorption of SO9 in aqueous potassium carbonate with arsenite catalyst, and (3) reaction of butene with sulfuric acid to butanol. [Pg.2115]

The other major type is gas absorption of inorganic components in aqueous solutions. For this type design one uses mass transfer coefficients. Packed towers are used so often for this type that its discussion is often included under sections on packed towers. However, in this book it is included here. [Pg.98]

Coppock and Meiklejohn (C9) determined liquid mass-transfer coefficients for the absorption of oxygen in water. The value of k, was observed to vary markedly with variations of bubble velocity, from 0.028 to 0.055 cm/sec for a velocity range from 22 to 28 cm/sec. These results appear to be in general agreement with the results obtained by Datta et al. (D2) and by Guyer and Pfister (G9) for the absorption of carbon dioxide by water. [Pg.111]

Yoshida and Akita (Yl) determined volumetric mass-transfer coefficients for the absorption of oxygen by aqueous sodium sulfite solutions in counter-current-ffow bubble-columns. Columns of various diameters (from 7.7 to 60.0 cm) and liquid heights (from 90 to 350 cm) were used in order to examine the effects of equipment size. The volumetric absorption coefficient reportedly increases with increasing gas velocity over the entire range investigated (up to approximately 30 cm/sec nominal velocity), and with increasing column diameter, but is independent of liquid height. These observations are somewhat at variance with those of other workers. [Pg.113]

The results of Massimilla et al., 0stergaard, and Adlington and Thompson are in substantial agreement on the fact that gas-liquid fluidized beds are characterized by higher rates of bubble coalescence and, as a consequence, lower gas-liquid interfacial areas than those observed in equivalent gas-liquid systems with no solid particles present. This supports the observations of gas absorption rate by Massimilla et al. It may be assumed that the absorption rate depends upon the interfacial area, the gas residence-time, and a mass-transfer coefficient. The last of these factors is probably higher in a gas-liquid fluidized bed because the bubble Reynolds number is higher, but the interfacial area is lower and the gas residence-time is also lower, as will be further discussed in Section V,E,3. [Pg.125]

The results reported for beds of small particles (1 mm diameter and less) are in substantial agreement on the fact that the presence of solid particles tends to decrease the gas holdup and, as a consequence, the gas residencetime. This fact may also support the observations of gas absorption rate by Massimilla et al. (Section V,E,1) if it is assumed that a decrease of absorption rate caused by a decrease of residence time outweighs the increase of absorption rate caused by increase of mass-transfer coefficient arising from the increase in bubble Reynolds number. These results on gas holdup are in... [Pg.126]

The principal applications of mass transfer are in the fields of distillation, gas absorption and the other separation processes involving mass transfer which are discussed in Volume 2, In particular, mass transfer coefficients and heights of transfer units in distillation, and in gas absorption are discussed in Volume 2,. In this section an account is given of some of the experimental studies of mass transfer in equipment of simple geometry, in order to provide a historical perspective. [Pg.646]

The gas phase mass transfer coefficient for the absorption of ammonia into water from a mixture of composition NHj 20%, N2 73%, Hj 7% is found experimentally to be 0.030 m/s. What would you expect the transfer coefficient to be for a mixture of composition NH3 5%, N2 60%, Hj 35% All compositions are given on a molar basis. The total pressure and temperature are die same in both cases. The transfer coefficients are based on a steady-state film model and the effective film thickness may be assumed constant. Neglect the solubility of Ny and Hi in water. [Pg.859]

By using the simple Reynolds Analogy, obtain the relation between the heat transfer coefficient and the mass transfer coefficient for the gas phase for the absorption of a soluble component from a mixture of gases. If the heat transfer coefficient is 100 W/m2 K, what will the mass transfer coefficient be for a gas of specific heat capacity Cp of 1.5 kJ/kg K and density 1.5 kg/m- The concentration of the gas is sufficiently low for hulk flow effects to be negligible. [Pg.866]

Their correlations were based on a large amount of data on gas absorption and distillation with a variety of packings, which included Pall rings and Berl saddles. Their method for estimating the effective area of packing can also be used with experimentally determined values of the mass-transfer coefficients, and values predicted using other correlations. [Pg.601]

If the reaction is slow, there is a small effect on the overall mass transfer coefficient. The driving force for mass transfer will be greater than that for physical absorption alone, as a result of the dissolving gas reacting and not building up in the bulk liquid to the same extent as with pure physical absorption. [Pg.125]

For diffusion, the conventional two-film approach is taken with water-side (kw) and air-side (kA) mass transfer coefficients (m/h) being defined. Values of 0.05m/h for kw and 5m/h for kA are used. The absorption D value is then... [Pg.24]


See other pages where Absorption mass transfer coefficient is mentioned: [Pg.265]    [Pg.265]    [Pg.20]    [Pg.23]    [Pg.37]    [Pg.38]    [Pg.589]    [Pg.604]    [Pg.617]    [Pg.620]    [Pg.1364]    [Pg.1424]    [Pg.1424]    [Pg.101]    [Pg.113]    [Pg.328]    [Pg.854]    [Pg.138]    [Pg.154]    [Pg.593]   
See also in sourсe #XX -- [ Pg.145 , Pg.152 , Pg.153 ]




SEARCH



Absorption coefficient

Absorption coefficient coefficients

Absorption column design mass transfer coefficients

Absorption columns mass-transfer coefficients

Absorption mass transfer

Absorption packing mass transfer coefficients

Mass coefficient

Mass transfer coefficient

© 2024 chempedia.info