Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorption, distribution, metabolism studies

Historically, drug absorption, distribution, metabolism, excretion, and toxicity ADMET) studies in animal models were performed after the identification of a lead compound. In order to avoid costs, nowadays pharmaceutical companies evaluate the ADMET profiles of potential leads at an earlier stage of the development... [Pg.607]

The overall objective of clinical trials is to establish a drug therapy that is safe and effective in humans, to the extent that the risk-benefit relationship is acceptable. The ICH process has developed an internationally accepted definition of a clinical trial as Any investigation in human subjects intended to discover or verify the clinical, pharmacological and/or other pharmacodynamic effects of one or more investigational medicinal product(s), and/or to identify any adverse reactions to one or more investigational medicinal product(s) and/or to study absorption, distribution, metabolism and excretion of one or more investigational medicinal product(s) with the object of ascertaining its (their) safety and/or efficacy. ... [Pg.73]

Absorption, Distribution, Metabolism, and Excretion. Evidence of absorption comes from the occurrence of toxic effects following exposure to methyl parathion by all three routes (Fazekas 1971 Miyamoto et al. 1963b Nemec et al. 1968 Skiimer and Kilgore 1982b). These data indicate that the compound is absorbed by both humans and animals. No information is available to assess the relative rates and extent of absorption following inhalation and dermal exposure in humans or inhalation in animals. A dermal study in rats indicates that methyl parathion is rapidly absorbed through the skin (Abu-Qare et al. 2000). Additional data further indicate that methyl parathion is absorbed extensively and rapidly in humans and animals via oral and dermal routes of exposure (Braeckman et al. 1983 Flollingworth et al. 1967 Ware et al. 1973). However, additional toxicokinetic studies are needed to elucidate or further examine the efficiency and kinetics of absorption by all three exposure routes. [Pg.128]

Pharmacokinetics—The science of quantitatively predicting the fate (disposition) of an exogenous substance in an organism. Utilizing computational techniques, it provides the means of studying the absorption, distribution, metabolism and excretion of chemicals by the body. [Pg.244]

No data were located concerning whether pharmacokinetics of endosulfan in children are different from adults. There are no adequate data to determine whether endosulfan or its metabolites can cross the placenta. Studies in animals addressing these issues would provide valuable information. Although endosulfan has been detected in human milk (Lutter et al. 1998), studies in animals showed very little accumulation of endosulfan residues in breast milk (Gorbach et al. 1968 Indraningsih et al. 1993), which is consistent with the rapid elimination of endosulfan from tissues and subsequent excretion via feces and urine. There are no PBPK models for endosulfan in either adults or children. There is no information to evaluate whether absorption, distribution, metabolism, or excretion of endosulfan in children is different than in adults. [Pg.200]

Hansch and Leo [13] described the impact of Hpophihdty on pharmacodynamic events in detailed chapters on QSAR studies of proteins and enzymes, of antitumor drugs, of central nervous system agents as well as microbial and pesticide QSAR studies. Furthermore, many reviews document the prime importance of log P as descriptors of absorption, distribution, metabolism, excretion and toxicity (ADMET) properties [5-18]. Increased lipophilicity was shown to correlate with poorer aqueous solubility, increased plasma protein binding, increased storage in tissues, and more rapid metabolism and elimination. Lipophilicity is also a highly important descriptor of blood-brain barrier (BBB) permeability [19, 20]. Last, but not least, lipophilicity plays a dominant role in toxicity prediction [21]. [Pg.358]

Absorption, Distribution, Metabolism, and Excretion. There are no data available on the absorption, distribution, metabolism, or excretion of diisopropyl methylphosphonate in humans. Limited animal data suggest that diisopropyl methylphosphonate is absorbed following oral and dermal exposure. Fat tissues do not appear to concentrate diisopropyl methylphosphonate or its metabolites to any significant extent. Nearly complete metabolism of diisopropyl methylphosphonate can be inferred based on the identification and quantification of its urinary metabolites however, at high doses the metabolism of diisopropyl methylphosphonate appears to be saturated. Animal studies have indicated that the urine is the principal excretory route for removal of diisopropyl methylphosphonate after oral and dermal administration. Because in most of the animal toxicity studies administration of diisopropyl methylphosphonate is in food, a pharmacokinetic study with the compound in food would be especially useful. It could help determine if the metabolism of diisopropyl methylphosphonate becomes saturated when given in the diet and if the levels of saturation are similar to those that result in significant adverse effects. [Pg.108]

Comparative Toxicokinetics. The toxicokinetics database is wholly inadequate with respect to comparing toxicokinetics across species, largely because of the dearth of baseline data regarding absorption, distribution, metabolism, and excretion in any species after exposure to mineral oil hydraulic fluids, organophosphate ester hydraulic fluids, or polyalphaolefin hydraulic fluids. Also, no studies were located on the toxicokinetic properties of hydraulic fluids in humans. [Pg.248]

Mass transfer phenomena exist everywhere in nature and are important in the pharmaceutical sciences. We may think of drug synthesis preformulation studies dosage form design and manufacture and drug absorption, distribution, metabolism, and excretion. Mass transfer plays a significant role in each. Mass transfer is referred to as the movement of molecules caused not only by diffusion but also by convection [1],... [Pg.40]

An important part of the optimization process of potential leads to candidates suitable for clinical trials is the detailed study of the absorption, distribution, metabolism and excretion (ADME) characteristics of the most promising compounds. Experience has learned that physico-chemical properties play a key role in drug metabolism and pharmacokinetics (DMPK) [1-3]. As an example, physicochemical properties relevant to oral absorption are described in Fig. 1.1. It is important to note that these properties are not independent, but closely related to each other. [Pg.4]

This chapter will review some of the important methods for carrying out in vivo absorption and bioavailability studies, as well as attempt to provide an overview of how the information may be used in the drug discovery process. The chapter is aimed at medicinal chemists and thus will focus on the use of animals in discovery phase absorption, distribution, metabolism, and excretion/pharmacokinetic (ADME/PK) studies, rather than the design of studies that are for regulatory submission, or part of a development safety package. [Pg.133]

Pharmacokinetic/ ADME (absorption, distribution, metabolism, elimination) studies including bioanalytical method development... [Pg.366]

Absorption, Distribution, Metabolism, and Excretion. Metabolism and excretion in animals exposed to acrylonitrile by the inhalation and oral routes have been studied extensively. However, only limited data on absorption and distribution are available. Some data on humans exposed by inhalation are available. No data are available on the toxicokinetics of acrylonitrile when the exposure route is dermal. More extensive information on absorption and distribution of acrylonitrile would be valuable to fully understand the toxicokinetics of acrylonitrile. Some data on the toxicokinetics of acrylonitrile... [Pg.70]

Comparative Toxicokinetics. The absorption, distribution, metabolism, and excretion of acrylonitrile in rats has been studied. Limited work in other species suggests that important species differences do exist. Further evaluation of these differences, and comparison of metabolic patterns in humans with those of animals would assist in determining the most appropriate animal species for evaluating the hazard and risk of human exposure to acrylonitrile. [Pg.71]

Absorption, Distribution, Metabolism, and Excretion. There are no mechanistic or quantitative studies of hexachloroethane absorption from the lungs or across the gastrointestinal tract or skin. However, absorption does occur following oral exposure based on the appearances of hexachloroethane and its metabolites in blood, urine, and exhaled air (Fowler 1969b Gorzinski et al. 1985 Jondorf et al. 1957 Mitoma... [Pg.110]

Second, meanwhile, no international guidelines have been provided for the manufacture, marketing, and distribution of household insecticides on such a level as those of agricultural chemicals, and not even manufacturing registration is required in some countries. Of course, the minimal required toxicity studies are conducted with synthetic pyrethroids for household insecticides to examine absorption, distribution, metabolism, and genotoxicity in animals. [Pg.24]

Comparative Toxicokinetics. The toxicokinetic studies available indicate that the rat is a good model for human neurotoxicity observed after occupational exposure to 77-hexane. Mild signs can be produced in chickens and mice, but these do not progress to the serious neurotoxicity observed in humans and rats. Toxicokinetic data from other species (absorption, distribution, metabolism, excretion) could provide insight on the molecular mechanism(s) of the species specificity of 77-hexane toxicity and would be valuable for predicting toxic effects in humans. [Pg.169]

Toxicokinetic—The study of the absorption, distribution, metabolism, and elimination of toxic compounds in the living organism. [Pg.257]

The study of the kinetics of absorption, distribution, metabolism and excretion of toxic or potentially toxic chemicals. [Pg.696]

Absorption, Distribution, Metabolism, and Excretion. There are limited data on the absorption, distribution, metabolism, and excretion of endrin in humans and animals. Limited studies provide qualitative evidence that endrin is absorbed following inhalation, oral, and dermal exposures (Chemoff et al. 1979a Fleming et al. 1994 Kintz et al. 1992 Teschke et al. 1993 Wolfe et al. 1963), however, no information is available on the rate or extent of absorption that occurs by any of these routes. Additional studies are needed to determine absorption rates following exposure by all routes. [Pg.96]


See other pages where Absorption, distribution, metabolism studies is mentioned: [Pg.190]    [Pg.26]    [Pg.122]    [Pg.293]    [Pg.306]    [Pg.248]    [Pg.249]    [Pg.129]    [Pg.210]    [Pg.352]    [Pg.353]    [Pg.207]    [Pg.5]    [Pg.420]    [Pg.812]    [Pg.573]    [Pg.105]    [Pg.354]    [Pg.320]    [Pg.168]    [Pg.18]    [Pg.4]    [Pg.782]    [Pg.367]    [Pg.128]   
See also in sourсe #XX -- [ Pg.1785 ]




SEARCH



Absorption studies

Absorption, distribution

Absorption, distribution, metabolism

Distribution studies

© 2024 chempedia.info