Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A-silyl

Difunctional target molecules are generally easily disconnected in a re/ro-Michael type transform. As an example we have chosen a simple symmetrical molecule, namely 4-(4-methoxyphenyl)-2,6-heptanedione. Only p-anisaldehyde and two acetone equivalents are needed as starting materials. The antithesis scheme given helow is self-explanatory. The aldol condensation product must be synthesized first and then be reacted under controlled conditions with a second enolate (e.g. a silyl enolate plus TiCl4 or a lithium enolate), enamine (M. Pfau, 1979), or best with acetoacetic ester anion as acetone equivalents. [Pg.205]

The (partial) description of the synthesis and coupling of the five fragments starts with the cyclohexyl moiety C —C. The first step involved the enantio- and diastereoselective harpless epoxidation of l,4-pentadien-3-ol described on p. 126f. The epoxide was converted in four steps to a d-vinyl d-lactone which gave a 3-cyclohexenecarboxylate via Ireland-CIaisen rearrangement (cf. p. 87). Uncatalysed hydroboration and oxidation (cf. p. 131) yielded the desired trans-2-methoxycyclohexanol which was protected as a silyl ether. The methyl car-... [Pg.324]

Polymerization of methacrylates is also possible via what is known as group-transfer polymerization. Although only limited commercial use has been made of this technique, it does provide a route to block copolymers that is not available from ordinary free-radical polymerizations. In a prototypical group-transfer polymerization the fluoride-ion-catalyzed reaction of a methacrylate (or acrylate) in the presence of a silyl ketene acetal gives a high molecular weight polymer (45—50). [Pg.247]

The anionic polymerization of methacrylates using a silyl ketene acetal initiator has been termed group-transfer polymerization (GTP). First reported by Du Pont researchers in 1983 (100), group-transfer polymerization allows the control of methacrylate molecular stmcture typical of living polymers, but can be conveniendy mn at room temperature and above. The use of GTP to prepare block polymers, comb-graft polymers, loop polymers, star polymers, and functional polymers has been reported (100,101). [Pg.269]

Anionic polymerisation techniques aie one of many ways to synthesise a special class of block copolymers, lefeiied to as star block copolymers (eq. 25) (33). Specifically, a "living" SB block is coupled with a silyl haUde coupling agent. The term living polymerisation refers to a chain polymerisation that proceeds in the absence of termination or transfer reactions. [Pg.180]

SynttMSH ol alkenes from a silyl carbanions and cartMnyl compounds In cases where separation ol sitylaloohol diastereomers (e g 4] can be achieved, pure Z or E oleflns can be Isolaled... [Pg.295]

The Alloc group can be converted to a silyl carbamate that is readily hydrolyzed. ... [Pg.332]

The silyl and stannyl substituents are crucial to these reactions in two ways. In the electrophilic addition step, they act as electron-releasing groups promoting addition and also control the regiochemistry. A silyl or starmyl substituent strongly stabilizes carboca-tion character at the /3-catbon atom and thus directs the electrophile to the a-carbon. The reaction is then completed by the limination step, in which the carbon-sihcon or carbon-tin bond is broken. [Pg.397]

Thionyl imide, HNSO, is a thermally unstable gas, which polymerizes readily. It can be prepared by the reaction of thionyl chloride with ammonia in the gas phase. Organic derivatives RNSO have higher thermal stability, especially when R = Ar. The typical synthesis involves the reaction of a primary amine or, preferably, a silylated amine with thionyl chloride. A recent example is the preparation of FcNSO (Fc = ferrocenyl) shown in Eq. 9.8. In common with other thionylimines, FcNSO readily undergoes SO2 elimination in the presence of a base, e.g., KO Bu, to give the corresponding sulfur diimide FcNSNFc. [Pg.168]

From a silylated hydroxy acid RCHO, TMSOTf, 2,6-di-t-butylpyridine, 77% yield."- ... [Pg.437]

In this series of amides, hydrolysis or aminolysis of a simple ester, cleavage of a silyl groups a cis/trans isomerization, or reduction of a quinone to a hydro-quinone exposes an alcohol that then induces deprotection by intramolecular addition to the amide carbonyl. [Pg.562]

Volatile silylamides are readily prepared by reacting a silyl halide with NH3, RNH2 or R2NH in the vapour phase or in Et20, e.g. ... [Pg.360]

Darzens reaction can be used to efficiently complete the stereoselective synthesis of a"-substituted epoxy ketones. As an example, Enders and Hett reported a technique for the asymmetric synthesis of a"-silylated a,P-epoxy ketones. Thus, optically active a -silyl a-bromoketone 38 was treated with LDA followed by the addition of benzaldehyde to give a"-silyl epoxyketone 40 in 66% yield with good... [Pg.19]

The Peterson olefination can be viewed as a silicon variant of the Wittig reaction, the well-known method for the formation of carbon-carbon double bonds. A ketone or aldehyde 1 can react with an a-silyl organometallic compound 2—e.g. with M = Li or Mg—to yield an alkene 3. [Pg.227]

The Peterson olefination is a quite modern method in organic synthesis its mechanism is still not completely understood. " The a-silyl organometallic reagent 2 reacts with the carbonyl substrate 1 by formation of a carbon-carbon single bond to give the diastereomeric alkoxides 4a and 4b upon hydrolysis the latter are converted into /3-hydroxysilanes 5a and 5b ... [Pg.227]

By application of the most common procedure—i.e by using an a-silylated organolithium or magnesium reagent—the /3-hydroxysilane 5a/5b can be isolated. However in the case of M = Na or K, the alkoxide oxygen in 4a/4b is of strong ionic character, and a spontaneous elimination step follows to yield directly the alkene 3. [Pg.227]

In their synthesis of (+)-cerulenin, Mani and Townsend employed lithiated epoxysilane 157, which they trapped with (4E,7 )-nonadienal to give a 77% yield of 158, which was further manipulated to give the natural product (Scheme 5.37) [58], as-ot, 3-Epoxy-Y,S-vinylsilanes 159 are regioselectively lithiated at the a-silyl position, and can subsequently be stereo selectively trapped with a range of electrophiles to give a-substituted epoxyvinylsilanes 160, which can in turn be isomerized to a-silyl-P-vinylketones 161 (Scheme 5.38) [59]. [Pg.164]

Direct deprotonation/electrophile trapping of simple aziridines is also possible. Treatment of a range of N-Bus-protected terminal aziridines 265 with LTMP in the presence ofMe3SiCl in THF at-78 °C stereospecifically gave trans-a, 3-aziridinylsi-lanes 266 (Scheme 5.67) [96]. By increasing the reaction temperature (to 0 °C) it was also possible to a-silylate a (3-disubstituted aziridine one should note that attempted silylation of the analogous epoxide did not provide any of the desired product [81],... [Pg.176]

Transmetalation of 19 by treatment with two equivalents of diethylaluminum chloride generates the aluminum enolate species 23. The latter reacts with acetaldehyde to produce the stable aluminum aldolates 24 which do not undergo the Peterson elimination23. A protic quench then provides the a-silylated aldol adducts of tentative structures (2 R)-25 and (2 V)-25 with little diastereoselectivity. Other diastereomers are not observed. [Pg.549]

Another example of reagent-induced asymmetric synthesis is the enantioselective preparation of phosphoramides 6 by addition of dialkylzine reagents to A-diphenylphosphinoylimincs 4 in the presence of the enantiomerically pure 1,2-amino alcohols 5a or 5 b (diethylzinc does not add to A-silyl- or A-phenylimines)12. Phosphoramides 6 (crystalline solids) are obtained in moderate to good yield and good enantioselectivity. The latter can be enhanced by recrystallization. Acidic hydrolysis with dilute 3 M hydrochloric acid/tetrahydrofuran provides the corresponding amines 7 without any racemization. [Pg.701]

Another route to A-benzoyl-L-daunosamine is the 1,3-addition of silyl ketene acetal 4 to the chiral nitrone 5, accompanied by a silyl group transfer in acetonitrile under mild conditions. This reaction provides high stereoselectivity in favor of the tw -product 621. [Pg.764]

Moderate stereoselectivity is observed in the reaction of a glycine cation equivalent with a silyl enol ether86. [Pg.819]

The optically active ethoxylaetam 13 (see Appendix) gives similar results with an allylsilane102. The reaction with a silyl enol ether, however, proceeds with low diastereoselectivity. [Pg.830]

The final example concerns cyclization of a silyl enol ether, connected to yet another carbon atom. The (.Ej-enol ether 23 appears to be converted with high stereoselectivity into the aldehyde 24 in 70- 90% yield, while the (Z)-enol ether 23 affords the epimeric aldehyde 25 in similar yield and selectivity164. [Pg.850]

A very efficient method for annulations158 is based on the addition of lithium or silyl enolates to a-silylated enones as a key step. The diastereoselective 1,4-addition is followed by an aldol condensation. This procedure allows Michael additions under aprotic conditions, whereby the silyl substituent stabilizes the enolate of the Michael adduct preventing polymerization of the enone, 59 l63. [Pg.970]

The addition of the lithium enolates of methyl acetate and methyl (trimelhylsilyl)acetate to ( + )-(S)-2-(4-methylphenylsulfinyl)-2-cycloalkenones gives, after desulfurization, (/ -substituted cycloalkenones. A higher level of selectivity is observed with the a-silyl ester enolate and in the cyclohexenone series13. The stereochemical outcome is rationalized by assuming attack on a ground-state conformation analogous to that in Section 1.5.3.2.1. [Pg.1046]

Similar results were obtained by Ogino and co-workers. After the initial cleavage of the CO from the metal, a silyl group migration occurs. It was shown by cross experiments that in this case the silyl substituent migrates and not the silylene. In a subsequent step, the silylene is then displaced by CO. Unfortunately, no trapping experiments of the silylenes in solution have been reported. [Pg.29]

This excellent method of oxidative cleavage (/) of carbon-silicon bonds requires that the silane carry an electronegative substituent (2), such as alkoxy or fluoro. Either hydrogen peroxide or mcpba may be used as oxidant, and the alcohol is produced with retention of configuration (3). Fluoride ion is normally a mandatory additive in what is believed to be a fluoride ion-assisted rearrangement of a silyl peroxide, as shown below ... [Pg.123]

Structural analogues of the /]4-vinylketene E were isolated by Wulff, Rudler and Moser [15]. The enaminoketene complex 11 was obtained from an intramolecular reaction of the chromium pentacarbonyl carbene complex 10. The silyl vinylketene 13 was isolated from the reaction of the methoxy(phenyl)-carbene chromium complex 1 and a silyl-substituted phenylacetylene 12, and -in contrast to alkene carbene complex 7 - gave the benzannulation product 14 after heating to 165 °C in acetonitrile (Scheme 6). The last step of the benzannulation reaction is the tautomerisation of the /]4-cyclohexadienone F to afford the phenol product G. The existence of such an intermediate and its capacity to undergo a subsequent step was validated by Wulff, who synthesised an... [Pg.127]

The polymerization of aromatic diamines with acid chlorides in solution works well.7 914 35 The basicity of the aromatic diamine is low and acid binding can be achieved with several compounds and even solvents such as TV-methylpyrrolidonc (NMP) and dimethylacetamide (DMAc). The all-para aromatic amide poly(p-phenyleneterephthalamide) can be synthesized in DM Ac.7,9,14 To prevent precipitation of the polymer, a salt such as calcium chloride or lithium chloride can be added. It is also possible to react the acid chloride with a silylated diamine ... [Pg.156]


See other pages where A-silyl is mentioned: [Pg.311]    [Pg.388]    [Pg.517]    [Pg.133]    [Pg.563]    [Pg.9]    [Pg.78]    [Pg.129]    [Pg.10]    [Pg.94]    [Pg.200]    [Pg.265]    [Pg.545]    [Pg.697]    [Pg.777]    [Pg.342]    [Pg.466]    [Pg.29]    [Pg.175]    [Pg.345]   


SEARCH



A- silyl-substituted

A-C-Silylation

A-Curcumene via reductive silylation of anisole

A-Silyl anion

A-Silyl carbocations

A-Silyl carbocations NMR spectra

A-Silyl carbocations ab initio calculations for

A-Silyl carbocations gas-phase studies

A-Silyl carbocations in solvolysis

A-Silyl complexes

A-Silyl enethiols

A-Silyl enol

A-Silyl esters

A-Silyl group, stabilization

A-Silyl imines

A-Silyl ketones

A-Silyl organometallic reagents

A-Silyl vinyl sulfides

A-Silyl-substituted carbenium ions

A-Silylaminocarboxylic acid silyl esters

A-silyl Grignard reagents

A-silyl carbanion

A-silyl carbonyl compounds

A-silyl nitriles

A-silyl oxyanions

A-silyl phosphonates

A-silyl radicals

A-silylated phosphine

Alcohols as silyl ethers

Aldehydes a-silyl

Carbanions, a-silyl ambient

Carbanions, a-silyl crystal structure

Carbanions, a-silyl functionalized

Carbanions, a-silyl general methods

Carbanions, a-silyl hyperconjugation

Carbanions, a-silyl imines

Carbanions, a-silyl stabilization

Carbanions, a-silyl synthesis

Carbonyl compounds a-silyl phosphonates

Coronafacic acid via a-silyl carbanions

Cyanides, a-alkoxyacyl reaction with silyl enol ethers

Cyclopentenones with a-silyl ester enolates

Ethers, a-silyl

Generation of a-Silyl Carbanions Bearing an Ester Group

Generation of a-Silyl Carbanions and their Peterson Reactions

Generation of a-Silyl Carbanions by Tin-Lithium Transmetallation

Generation of a-Silyl Carbanions from Allylsilanes

Ketones, a-silyl enol ether preparation

Peptides (s. a. Carboxylic acid silyl derivatives

Peterson alkenation a-silyl organometallic compounds

Prolinol Silyl Ethers as Asymmetric Organocatalysts

Protection as silyl ethers

Si2 Protection of hydroxy groups as silyl ethers

Silyl enol ethers a-sulfonyloxygenation

Silyl enol ethers as nucleophiles

Silyl enol ethers conversion to a-hydroxyketones by oxidation

Silyl ethers as protecting group

Silyl ketene acetals a-hydroxylation

Sulfides, a-bromosilyl silyl thiocarbonyl ylide generation

Synthesis of Open-Chain a-Silyl Vinyl Sulfides

Z-a-Silyl enethiols

Z-a-Silyl vinyl sulfides

© 2019 chempedia.info